the sunset in the mirror a regulator for inequalities in
play

The sunset in the mirror: a regulator for inequalities in the masses - PowerPoint PPT Presentation

The sunset in the mirror: a regulator for inequalities in the masses Pierre Vanhove 2nd French Russian Conference Random Geometry and Physics Institut Henri Poincar, Paris, Decembre 17-21, 2016 based on [arXiv:1309.5865], [arXiv:1406.2664],


  1. The sunset in the mirror: a regulator for inequalities in the masses Pierre Vanhove 2nd French Russian Conference Random Geometry and Physics Institut Henri Poincaré, Paris, Decembre 17-21, 2016 based on [arXiv:1309.5865], [arXiv:1406.2664], [arXiv:1601.08181] Spencer Bloch, Matt Kerr Pierre Vanhove (IPhT) Sunset in the mirror 21/10/2016 1 / 34

  2. The loop amplitudes In a perturbative treatement of scattering amplitudes in QFT A = A tree + g A 1 − loop + · · · + g L A L − loop + · · · It is a major conceptual and technical question in high-energy physics to understand the nature of the basis of integrals at loop orders Pierre Vanhove (IPhT) Sunset in the mirror 21/10/2016 2 / 34

  3. The loop amplitudes Integration by part considerations indicate the existence of a finite basis of (master) integral functions B ( L ) at each loop order [Petukhov-Smirnov, Lee] � A L − loop = coeff i Integral i + Rational i ∈ B ( L ) ◮ dimension of the basis at L � 2 loop is not known ◮ Construction of the basis is still a major open question Pierre Vanhove (IPhT) Sunset in the mirror 21/10/2016 3 / 34

  4. The loop amplitudes For instance at one-loop order in D = 4 − 2 ǫ dimensions, the basis of integral function is known for a long time [Bern,Dixon,Kosower] to be consisting of Boxes, triangles, bubble, tadpole integrals � d D ℓ I � = ( ℓ 2 − m 2 1 )(( ℓ + K 1 ) 2 − m 2 2 )(( ℓ + K 1 + K 2 ) 2 − m 2 3 )(( ℓ − K 4 ) 2 − m 2 4 ) � d D ℓ I ⊲ = ( ℓ 2 − m 2 1 )(( ℓ + K 1 ) 2 − m 2 2 )(( ℓ + K 1 + K 2 ) 2 − m 2 3 ) � d D ℓ I ◦ = ( ℓ 2 − m 2 1 )(( ℓ + K 1 ) 2 − m 2 2 ) Pierre Vanhove (IPhT) Sunset in the mirror 21/10/2016 4 / 34

  5. Feynman Integrals: parametric representation ◮ Typically form of a Feynman graph with L loops and n propagators � I Γ = Ω Γ ∆ ◮ The domain of integration ∆ = { x i � 0 } ⊂ P n − 1 ◮ The integrand is the differential form n U n −( L + 1 ) D Ω Γ = Γ ( n − LD � 2 (− 1 ) j − 1 x j dx 1 ∧ · · · � 2 ) dx j ∧ · · · ∧ dx n ( U � i x i − F ) n − L D i m 2 2 j = 1 ◮ U and F are the Symanzik polynomials [Itzykson, Zuber] ◮ U is of degree L and F of degree L + 1 in the x i Pierre Vanhove (IPhT) Sunset in the mirror 21/10/2016 5 / 34

  6. Feynman Integrals: numerical periods � I Γ = Ω Γ ∆ ◮ UV and IR divergences treated by an analytic continuation in D ◮ Since the dimension of space-time only enters in the exponent n U n −( L + 1 ) D Ω Γ = Γ ( n − LD � 2 (− 1 ) j − 1 x j dx 1 ∧ · · · � 2 ) dx j ∧ · · · ∧ dx n ( U � i x i − F ) n − L D i m 2 2 j = 1 ◮ We can perform a Laurent expansion in ǫ = ( 4 − D ) / 2 ∞ � c i ǫ i I Γ = i =− 2 L ◮ The c i are finite and are numerical period integrals Pierre Vanhove (IPhT) Sunset in the mirror 21/10/2016 6 / 34

  7. Feynman integrals: period integrals ◮ Amplitudes are multivalued quantities in the complex energy plane with monodromies around the branch cuts for particle production ◮ They satisfy differential equation with respect to its parameters : kinematic invariants s ij , internal masses m i , . . . ◮ monodromies with differential equations : typical of periods integrals Pierre Vanhove (IPhT) Sunset in the mirror 21/10/2016 7 / 34

  8. Periods according [Kontsevich, Zagier] [Kontsevich, Zagier] define : P ∈ C is the ring of periods, is z ∈ P if ℜ e ( z ) and ℑ m ( z ) are of the forms � n f ( x i ) � dx i < ∞ g ( x i ) ∆ ∈ R n i = 1 with f , g ∈ Z [ x 1 , · · · , x n ] and ∆ is algebraically defined by polynomial inequalities and equalities. Pierre Vanhove (IPhT) Sunset in the mirror 21/10/2016 8 / 34

  9. Periods of VMHS � I Γ = Ω Γ ∆ ◮ We have Ω Γ ∈ H n − 1 ( P n − 1 \{ g ( x i ) = 0 } ) ◮ But ∂∆ ∩ { g ( x i ) = 0 } � ∅ and ∂∆ � ∅ ∆ � H n − 1 ( P n − 1 \{ g ( x i ) = 0 } ) ◮ The Feynman integral are periods of the relative cohomology after performing the appropriate blow-ups [Bloch,Esnault,Kreimer] � P n − 1 \{ g ( x i ) = 0 } ) , � H n − 1 ( ∆ ) ◮ Since Ω Γ varies when one changes the kinematic variables one needs to study familly of cohomology:variation of (mixed) Hodge structure Pierre Vanhove (IPhT) Sunset in the mirror 21/10/2016 9 / 34

  10. The triangle graph integral И Паниковский от правого конца прямой повел вверх волнистый перпендикуляр. [...] Тут Паниковский соединил обе линии третьей, так что на песке появилось нечто похожее на треугольник, и закончил: [...] Балаганов с уважением посмотрел на треугольник. Tout en parlant, il traça une perpendiculaire ondulée montant depuis l’extrémité droite de sa ligne. [...] Panikovski réunit alors les deux lignes par une troisième qui formait sur le sable avec les deux autres comme une sorte de triangle et acheva: [...] Balaganov regarde le triangle avec respect. (Ilf and Petrov – Golden Calf) Pierre Vanhove (IPhT) Sunset in the mirror 21/10/2016 10 / 34

  11. The triangle graph integral p 2 p 1 + p 2 + p 3 = 0 ; i � 0 � dxdy D ( z ) I ⊲ = 3 )( xy + x + y ) = � � 1 ( p 2 1 x + p 2 2 y + p 2 x � 0 p 4 1 + p 4 2 + p 4 3 − ( p 2 1 p 2 2 + p 2 1 p 2 3 + p 2 2 p 2 3 ) 2 y � 0 z roots of ( 1 − x )( p 2 3 − xp 2 1 ) + p 2 z and ¯ 2 x = 0 ◮ Single-valued Bloch-Wigner dilogarithm for z ∈ C \{ 0 , 1 } D ( z ) = ℑ m ( Li 2 ( z )) + arg ( 1 − z ) log | z | ◮ The integral has branch cuts arising from the square root since D ( z ) is analytic Pierre Vanhove (IPhT) Sunset in the mirror 21/10/2016 11 / 34

  12. The triangle graph integral � dxdy I ⊲ = ∆ = { x = 0 } ∪ { y = 0 } ∪ { z = 0 } ( p 2 1 x + p 2 2 y + p 2 3 )( xy + x + y ) ∆ The denominator is the quadric E ⊲ = { ( p 2 1 x + p 2 2 y + p 2 3 z )( xy + xz + yz ) = 0 } dxdy 3 )( xy + x + y ) ∈ H := H 2 ( P 2 − E ⊲ , ∆ \ ( ∆ ∪ E ⊲ ) ∩ ∆ ) ( p 2 1 x + p 2 2 y + p 2 Because ∂∆ � ∅ we passed to the relative cohomology Because ∂∆ ∩ E ⊲ = { [ 1 , 0 , 0 ] , [ 0 , 1 , 0 ] , [ 0 , 0 , 1 ] } we one need to blow-up these 3 points Pierre Vanhove (IPhT) Sunset in the mirror 21/10/2016 12 / 34

  13. The triangle graph motive We can then deduce the Hodge period matrix [Bloch, Kreimer]     0 0     1 0 0       − Li 1 ( z ) 2 i π 0   0   ( 2 i π ) 2   − Li 2 ( z ) 2 i π log z   ◮ The construction is valid for all one-loop amplitudes in four dimensions ◮ The finite part of these integral functions are given by dilogarithms and logarithms � z I � , I ⊲ ∼ Li 2 ( z ) = − log t d log ( 1 − t ) 0 � z I ◦ ∼ log ( 1 − z ) = d log ( 1 − t ) 0 x Pierre Vanhove (IPhT) Sunset in the mirror 21/10/2016 13 / 34

  14. The sunset graph Pierre Vanhove (IPhT) Sunset in the mirror 21/10/2016 14 / 34

  15. The sunset integral We consider the sunset integral in two Euclidean dimensions � I 2 ∆ := { [ x : y : z ] ∈ P 2 | x � 0 , y � 0 , z � 0 } ⊖ = Ω ⊖ ; ∆ ◮ The sunset integral is the integration of the 2-form zdx ∧ dy + xdy ∧ dz + ydz ∧ dx 3 z )( xz + xy + yz ) − K 2 xyz ∈ H 2 ( P 2 − E K 2 ) Ω ⊖ = ( m 2 1 x + m 2 2 y + m 2 ◮ The sunset family of open elliptic curve (modular only for all equal masses) E K 2 = { ( m 2 1 x + m 2 2 y + m 2 3 z )( xz + xy + yz ) − K 2 xyz = 0 } Pierre Vanhove (IPhT) Sunset in the mirror 21/10/2016 15 / 34

  16. The sunset geometry S = { P 1 = [ 1 : 0 : 0 ] , P 2 = [ 0 : 1 : 0 ] , P 3 = [ 0 : 0 : 1 ] , Q 1 , Q 2 , Q 3 } ◮ P i − Q i i = 1 , 2 , 3 are 2-torsion divisors ◮ The elliptic curve intersects the domain of integration ∆ ∩ E K 2 = S . We need to blow-up P 2 − E K 2 For generic graph the difficulty is the structure at infinity of the intersection of the poles of the integrand of the Feynman integral and the (blown-up) domain of integration Pierre Vanhove (IPhT) Sunset in the mirror 21/10/2016 16 / 34

  17. The sunset mixed Hodge structure ◮ If P → P 2 is the blow-up and ˆ E K 2 is the strict transform of E K 2 ◮ Hexagon h 0 union of strict transform of ∂ D = { xyz = 0 } and the 3 P 1 divisors ◮ Then in P we have resolved the two problems h = h 0 − ( h 0 ∩ ˆ E K 2 ) ∆ ∩ ˆ ˜ ∆ ∈ H 2 ( P − ˆ ˜ E K 2 , h ) = H 2 ( P − ˆ E K 2 , h ) ∨ E K 2 = ∅ ; ◮ The sunset integral is a period of this (mixed) Hodge structure � � Ω ⊖ , ˜ I ⊖ = ∆ ◮ When varying K 2 we have a family of elliptic curves and an associated variation of Hodge structures [Bloch, Esnault, Kreimer; Müller-Stach, Weinzeirl, Zayadeh] Pierre Vanhove (IPhT) Sunset in the mirror 21/10/2016 17 / 34

  18. The sunset motive We have the follow (short) sequence m , Q ( 2 )) α H 1 ( G 2 → H 1 ( E 0 K 2 , Q ( 2 )) → H 2 ( G 2 m , E 0 − K 2 ; Q ( 2 )) → H 2 ( G 2 m , Q ( 2 )) → 0 . K 2 = E K 2 − { P 1 , P 2 , P 3 , Q 1 , Q 2 , Q 3 } and P 2 − h = G 2 with E 0 m ◮ Since Image ( α ) = span � d log ( X / Z ) , d log ( Y / Z ) � ◮ Introducing the regulator � X � Z , Y L 2 = F ( P 3 ) + F ( Q 2 ) − F ( P 2 ) − F ( Q 3 ) Z � X � � x F ( x ) = − log Z ( y ) d log y x 0 ◮ with the 2-torsion relations Q i = − P i for i = 1 , 2 , 3 Pierre Vanhove (IPhT) Sunset in the mirror 21/10/2016 18 / 34

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend