the scaling limit of the mst of a complete graph
play

The scaling limit of the MST of a complete graph Nicolas Broutin, - PowerPoint PPT Presentation

The scaling limit of the MST of a complete graph Nicolas Broutin, Inria Paris-Rocquencourt joint work with L. Addario-Berry, McGill C. Goldschmidt, Oxford G. Miermont, ENS Lyon The minimum spanning tree Definition. G = ( V , E ) a connected


  1. The scaling limit of the MST of a complete graph Nicolas Broutin, Inria Paris-Rocquencourt joint work with L. Addario-Berry, McGill C. Goldschmidt, Oxford G. Miermont, ENS Lyon

  2. The minimum spanning tree Definition. G = ( V , E ) a connected graph w e ≥ 0 , e ∈ E weights MST = lightest connected subgraph of G Kruskal’s algorithm. 1. sort the edges by increasing weight, e i , 1 ≤ i ≤ | E | 2. Initially set T 0 = ( V , ∅ ) 3. Set T i +1 = T i ∪ { e i } iff it does not create a cycle

  3. Kruskal – Example 1 4 10 7 3 6 2 8 9 5

  4. Kruskal – Example 1 4 10 7 3 6 2 8 9 5

  5. Kruskal – Example 1 4 10 7 3 6 2 8 9 5

  6. Kruskal – Example 1 4 10 7 3 6 2 8 9 5

  7. Kruskal – Example 1 4 10 7 3 6 2 8 9 5

  8. Kruskal – Example 1 4 10 7 3 6 2 8 9 5

  9. Random Model ”Mean-field” model graph: complete graph K n weights: iid uniform A little history. Frieze (’85): total weight converges to ζ (3) Janson (’95): CLT Aldous: degree of the node 1

  10. Random Model ”Mean-field” model graph: complete graph K n weights: iid uniform A little history. Frieze (’85): total weight converges to ζ (3) Janson (’95): CLT Aldous: degree of the node 1 But... all these informations are local What is the global metric structure?

  11. The continuum spanning tree The rescaled minimum spanning tree • T n the minimum spanning tree of K n • n − 1 / 3 d n , for d n the graph distance • µ n mass n − 1 on each vertex Theorem (ABGM ’13) There exists a random compact metric space M s.t. d − − − → T n GHP M

  12. Comparing metric spaces Gromov-Hausdorff topology. ( X 1 , d 1 ) ( X 2 , d 2 ) φ 1 φ 2 ( Z , δ )

  13. Comparing measured metric spaces Gromov-Hausdorff-Prokhorov topology. ( X 1 , d 1 , µ 1 ) ( X 2 , d 2 , µ 2 ) φ 1 φ 2 ( Z , δ )

  14. What does it look like? M

  15. A few properties of M Proposition. 1. M is a tree-like metric space 2. M has maximum degree 3 3. for µ -almost every x , deg( x ) = 1

  16. A few properties of M Proposition. 1. M is a tree-like metric space 2. M has maximum degree 3 3. for µ -almost every x , deg( x ) = 1 Proposition. M is not Aldous’ Continuum Random Tree (CRT)

  17. Elements of proof Random graphs Phase transition Scaling limit of large trees / CRT Structure of critical random graphs Minimum spanning tree

  18. G ( n , p ) random graphs Definition. Random graph G ( n , p ) graph on { 1 , 2 , . . . , n } independently, take edges with probability p C n i the connected components in decreasing order of size Phase transition: G ( n , c / n ) | C n c < 1: 1 | = O (log n ) k | ≈ n 2 / 3 | C n 1 | , | C n 2 | , . . . , | C n c = 1: | C n | C n c > 1: 1 | = Ω( n ), 2 | = O (log n )

  19. The phase transition in pictures

  20. The phase transition in pictures 1 . 0 G (10000 , 10000 )

  21. The phase transition in pictures

  22. When is the metric structure built? T ( n , p ) portion of the MST that is in G ( n , p ) T ( n , p ) = ( T 1 ( n , p ) , T 2 ( n , p ) , . . . ) Evolution of distances: • for all p < (1 − ǫ ) / n d GH ( T ( n , p ); “empty graph”) = O (log n ) • for all p > (1 + ǫ ) / n d GH ( T 1 ( n , p ); MST ) = O (log 10 n )

  23. When is the metric structure built? T ( n , p ) portion of the MST that is in G ( n , p ) T ( n , p ) = ( T 1 ( n , p ) , T 2 ( n , p ) , . . . ) Evolution of distances: • for all p < (1 − ǫ ) / n d GH ( T ( n , p ); “empty graph”) = O (log n ) • for all p > (1 + ǫ ) / n d GH ( T 1 ( n , p ); MST ) = O (log 10 n ) Look around the critical phase p ⋆ = 1 / n + λ n − 4 / 3 λ ∈ R large

  24. The phase transition For np = 1 + λ n − 1 / 3 Theorem. (Aldous ’97) λ ∈ R ( n − 2 / 3 | C n i | , s ( C n i )) i ≥ 1 → ( | γ i | , s ( γ i )) i ≥ 1

  25. The phase transition For np = 1 + λ n − 1 / 3 Theorem. (Aldous ’97) λ ∈ R ( n − 2 / 3 | C n i | , s ( C n i )) i ≥ 1 → ( | γ i | , s ( γ i )) i ≥ 1 W Brownien W λ t = λ t − t 2 / 2 + W t B λ t = W λ t − inf s ≤ t W λ t

  26. The phase transition For np = 1 + λ n − 1 / 3 Theorem. (Aldous ’97) λ ∈ R ( n − 2 / 3 | C n i | , s ( C n i )) i ≥ 1 → ( | γ i | , s ( γ i )) i ≥ 1 W Brownien W λ t = λ t − t 2 / 2 + W t B λ t = W λ t − inf s ≤ t W λ t

  27. The phase transition For np = 1 + λ n − 1 / 3 Theorem. (Aldous ’97) λ ∈ R ( n − 2 / 3 | C n i | , s ( C n i )) i ≥ 1 → ( | γ i | , s ( γ i )) i ≥ 1 W Brownien W λ t = λ t − t 2 / 2 + W t B λ t = W λ t − inf s ≤ t W λ t

  28. The phase transition For np = 1 + λ n − 1 / 3 Theorem. (Aldous ’97) λ ∈ R ( n − 2 / 3 | C n i | , s ( C n i )) i ≥ 1 → ( | γ i | , s ( γ i )) i ≥ 1 W Brownien s ( γ ) W λ t = λ t − t 2 / 2 + W t B λ t = W λ t − inf s ≤ t W λ t Poisson rate 1 on R 2 + | γ |

  29. The tree encoded by an excursion 0 1 excursion f tree T f For a continuous excursion f Definition: d f ( x , y ) = f ( x ) + f ( y ) − 2 x ∧ y ≤ t ≤ x ∨ y f ( t ) inf x ∼ f y if d f ( x , y ) = 0 ([0 , 1] / ∼ f , d f ) is a tree-like metric space

  30. The tree encoded by an excursion 0 1 excursion f tree T f For a continuous excursion f Definition: d f ( x , y ) = f ( x ) + f ( y ) − 2 x ∧ y ≤ t ≤ x ∨ y f ( t ) inf x ∼ f y if d f ( x , y ) = 0 ([0 , 1] / ∼ f , d f ) is a tree-like metric space

  31. Aldous’ Continuum Random Tree (CRT) Theorem. (Aldous ’91) T n a uniformly random tree on { 1 , 2 , . . . , n } d n − 1 / 2 T n → T 2 e

  32. Aldous’ Continuum Random Tree (CRT) Theorem. (Aldous ’91) T n a uniformly random tree on { 1 , 2 , . . . , n } d n − 1 / 2 T n → T 2 e e standard Brownian excursion T 2 e : Continuum random tree

  33. What does it look like? T 2 e

  34. Scaling critical random graphs G ( n , p ) critical window: for pn = 1 + λ n − 1 / 3 , λ ∈ R • C n i the i th largest c.c. • distances rescaled by n − 1 / 3 • mass n − 2 / 3 on each vertex Theorem. (ABG’12) There exists a sequence of random compact measured metric spaces s.t. d ( C n i ) i ≥ 1 → ( C i ) i ≥ 1 for the GHP distance

  35. A (limit) random connected component

  36. A limit connected component I Identifying points in excursions ≈ “Random foldings of a random tree” ˜ e ( t ) t

  37. A limit connected component I Identifying points in excursions ≈ “Random foldings of a random tree” u ˜ e ( t ) v t u v • Poisson process rate one under ˜ e For each point {• , • , •} identify two points of T 2˜ e

  38. A limit connected component II Structural approach: 1. Sample a connected 3-regular multigraph with 2( s − 1) vertices and 3( s − 1) edges 2. respective masses of the bits (“=edges”): ( X 1 , . . . , X 3( s − 1) ) ∼ Dirichlet( 1 2 , . . . , 1 2 ) 3. sample 3( s − 1) independent CRT with 2 distinguished points each s = 3

  39. A limit connected component II Structural approach: 1. Sample a connected 3-regular multigraph with 2( s − 1) vertices and 3( s − 1) edges 2. respective masses of the bits (“=edges”): ( X 1 , . . . , X 3( s − 1) ) ∼ Dirichlet( 1 2 , . . . , 1 2 ) 3. sample 3( s − 1) independent CRT with 2 distinguished points each X 6 X 1 X 5 X 4 X 2 X 3 s = 3

  40. A limit connected component II Structural approach: 1. Sample a connected 3-regular multigraph with 2( s − 1) vertices and 3( s − 1) edges 2. respective masses of the bits (“=edges”): ( X 1 , . . . , X 3( s − 1) ) ∼ Dirichlet( 1 2 , . . . , 1 2 ) 3. sample 3( s − 1) independent CRT with 2 distinguished points each √ X 2 · T 2 X 6 X 1 X 5 X 4 X 2 X 3 s = 3

  41. A large connected graph

  42. A large connected graph

  43. Use the coupling with G ( n , p ) G ( n , p ) process Removing non-MST edges

  44. Use the coupling with G ( n , p ) G ( n , p ) process Removing non-MST edges ??

  45. Forward-Backward approach Strategy. 1. Build G ( n , p ): Add all edges until some weight p ⋆ 2. Remove the edges that should not have been put

  46. Forward-Backward approach Strategy. 1. Build G ( n , p ): Add all edges until some weight p ⋆ 2. Remove the edges that should not have been put 2’. Conditional on G ( n , p ) = G , construct a tree distributed as MST(G)

  47. Forward-Backward approach Strategy. 1. Build G ( n , p ): Add all edges until some weight p ⋆ 2. Remove the edges that should not have been put 2’. Conditional on G ( n , p ) = G , construct a tree distributed as MST(G) ( e i ) i ≥ 1 , i.i.d. uniformly random edges Cycle breaking: While “not a tree” Remove e i unless it disconnects the graph

  48. Forward-Backward approach – the limit Strategy. 1. Build G ( n , p ): Add all edges until some weight p ⋆ 2. Remove the edges that should not have been put G ( n , p ) − n →∞ ( C 1 , C 2 , . . . ) − − → Cycle breaking for metric spaces: ( x i ) i ≥ 1 i.i.d. random points on the cycle structure While “not a tree” Remove x i unless it disconnects the metric space

  49. Construction of the limit n → ∞ ( C λ 1 , C λ G ( n , p ) 2 , . . . ) cycle breaking n → ∞ ( T λ 1 , T λ T ( n , p ) 2 , . . . ) λ → ∞ λ → ∞ n → ∞ ( T n , 0 , 0 , . . . ) ( M , 0 , 0 , . . . )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend