the poisson voronoi cell around an isolated nucleus
play

The Poisson-Voronoi cell around an isolated nucleus Pierre Calka - PowerPoint PPT Presentation

The Poisson-Voronoi cell around an isolated nucleus Pierre Calka October 9, 2017 Alea in Europe, TU Wien default Poisson point process B 4 B


  1. The Poisson-Voronoi cell around an isolated nucleus Pierre Calka October 9, 2017 Alea in Europe, TU Wien

  2. default Poisson point process �� �� � � � � � � � �� �� � � � � �� �� B 4 B 1 � � � � � � � � B 2 � � B 3 � � � � � � � P λ said homogeneous Poisson point process in R 2 with intensity λ if ◮ #( P ∩ B 1 ) Poisson r.v. of mean λ A ( B 1 ) ◮ #( P ∩ B 1 ) , · · · , #( P ∩ B ℓ ) independent ( B 1 , · · · , B ℓ ∈ B ( R 2 ), B i ∩ B j = ∅ , i � = j ) Two properties D ◮ Scaling invariance: µ · P λ = P λ √ µ � � � � ◮ Mecke’s formula: E f ( x , P λ ) = λ E ( f ( x , P ∪ { x } )) d x x ∈P λ

  3. default Poisson-Voronoi tessellation ◮ P λ homogeneous Poisson point process in R 2 of intensity λ ◮ For every nucleus x ∈ P λ , associated cell C ( x |P λ ) := { y ∈ R 2 : � y − x � ≤ � y − x ′ � ∀ x ′ ∈ P λ }

  4. default Typical Poisson-Voronoi cell ◮ Typical cell C : chosen uniformly among all cells � 1 E ( f ( C )) = lim f ( C ( x |P λ )) a.s. r →∞ N r x ∈P λ � C ( x |P λ ) ⊂ B r ( o ) � � � 1 E ( f ( C )) = f ( C ( x |P λ ) − x ) , B ∈ B ( R 2 ) λ A ( B ) E x ∈P λ ∩ B ◮ Theorem (Slivnyak): C D = C ( o |P λ ∪ { o } ) 0

  5. default Being in the typical cell F 0 ( K ) 0 K ◮ K convex body containing o in its interior ◮ Flower of K : F o ( K ) = ∪ x ∈ K B ( x , � x � ) Two properties ◮ Capacity probability: P ( K ⊂ C ( o |P λ ∪ { o } )) = e − λ A ( F o ( K )) ◮ Conditional distribution: ( P λ | K ⊂ C ( o |P λ ∪ { o } )) D = P λ \ F o ( K )

  6. default The Poisson-Voronoi cell around an isolated nucleus ◮ K convex body in R 2 ◮ An origin o chosen in int ( K ) ◮ Point process ( P λ | K ⊂ C ( o |P λ ∪ { o } )) ◮ Problem 1 . Asymptotics of the characteristics of the cell K λ = C ( o |P λ ∪ { o } )

  7. default The Poisson-Voronoi cell around an isolated nucleus o ◮ K convex body in R 2 ◮ An origin o chosen in int ( K ) ◮ Point process ( P λ | K ⊂ C ( o |P λ ∪ { o } )) ◮ Problem 1 . Asymptotics of the characteristics of the cell K λ = C ( o |P λ ∪ { o } )

  8. default The Poisson-Voronoi cell around an isolated nucleus o ◮ K convex body in R 2 ◮ An origin o chosen in int ( K ) ◮ Point process ( P λ | K ⊂ C ( o |P λ ∪ { o } )) ◮ Problem 1 . Asymptotics of the characteristics of the cell K λ = C ( o |P λ ∪ { o } )

  9. default The Poisson-Voronoi cell around an isolated nucleus o ◮ K convex body in R 2 ◮ An origin o chosen in int ( K ) ◮ Point process ( P λ | K ⊂ C ( o |P λ ∪ { o } )) ◮ Problem 1 . Asymptotics of the characteristics of the cell K λ = C ( o |P λ ∪ { o } )

  10. default Two associated problems o D ⊂ R 2 , o ∈ int ( D ) Problem 2 . Cell � Problem 3 . Cell C λ ( D ) = C ( o |P λ ∪ { o } ), K λ containing K , P λ conditioned on { K ⊂ one cell } P λ conditioned on {P λ ∩ D = ∅}

  11. default Plan Problem 1: asymptotics for K λ = C ( o |P λ \ F o ( K )) Problem 2: asymptotics for � K λ (no origin) Problem 3: asymptotics for C λ ( D ) = C ( o |P λ \ D ) Joint work with Yann Demichel (Paris Nanterre) & Nathana¨ el Enriquez (Paris-Sud)

  12. default Plan Problem 1: asymptotics for K λ = C ( o |P λ \ F o ( K )) Context Main results Support function Rewriting of the expectations Sketch of proof Problem 2: asymptotics for � K λ (no origin) Problem 3: asymptotics for C λ ( D ) = C ( o |P λ \ D )

  13. default Context: large Poisson-Voronoi cells ◮ Large cells in a Poisson-Voronoi tessellation: close to the circular shape D. Hug, M. Reitzner & R. Schneider (2004) ◮ When K is the unit-disk, � � � � λ →∞ λ − 2 3 2 − 1 3 − 1 3 2 2 3 − 4 1 2 2 3 π Γ 3 Γ E ( A ( K λ )) − A ( K ) ∼ , E ( N ( K λ )) λ →∞ λ ∼ 3 3 PC & T. Schreiber (2005) ◮ Estimate of the Hausdorff distance between K λ and K for a Poisson line tessellation D. Hug & R. Schneider (2014), R. Schneider (1988)

  14. default Context: approximation of a convex body from the inside K λ = Conv( P λ ∩ K ) Efron’s relation (1965): E ( N ( K λ )) = λ ( A ( K ) − E ( A ( K λ ))) K with a smooth boundary K polygon � � � − 1 λ →∞ λ − 2 4 3 3 − 4 λ →∞ ( λ − 1 log λ ) · 2 · 3 − 1 n K A ( K ) − E ( A ( K λ )) 3 2 3 Γ 2 A ( K ) − E ( A ( K λ )) ∼ r 3 d s ∼ s 3 ∂ K A. R´ enyi & R. Sulanke (1963, 1964)

  15. default Main results: smooth case A ( · ): area, U ( · ): perimeter, N ( · ): number of vertices r s : radius of curvature, n s : outer unit normal vector at s ∈ ∂ K � � � 1 s � s , n s � − 2 λ →∞ λ − 2 3 2 − 2 3 − 1 3 Γ 2 3 d s E ( A ( K λ )) − A ( K ) ∼ r 3 3 � � ∂ K � − 2 λ →∞ λ − 2 3 3 − 4 � s , n s � − 2 2 3 Γ E ( U ( K λ )) − U ( K ) ∼ 3 3 d s r s 3 � � ∂ K � − 2 1 1 3 2 2 3 − 4 2 3 Γ 3 d s E ( N ( K λ )) λ →∞ λ ∼ 3 � s , n s � r s 3 ∂ K

  16. default Main results: polygonal case A ( · ): area, U ( · ): perimeter, N ( · ): number of vertices n K : number of vertices of K , { a i } : vertices of K , o i : projection of o onto ( a i , a i +1 ) o n K � � o i � − 1 λ →∞ λ − 1 2 2 − 9 3 3 2 � a i +1 − a i � E ( A ( K λ )) − A ( K ) ∼ 2 π 2 2 i =1 λ →∞ ( λ − 1 log λ ) · 2 − 1 3 − 1 � n K i =1 � o i � − 1 E ( U ( K λ )) − U ( K ) ∼ λ →∞ (log λ ) · 2 · 3 − 1 n K . E ( N ( K λ )) ∼

  17. default Support function p o ( K , θ ) u θ K o Support function � x , u θ � p o ( K , θ ) = p o ( K , u θ ) = sup x ∈ K with u θ = (cos( θ ) , sin( θ )) Two properties ◮ Link with the flower: sup { r > 0 : ru θ ∈ F o ( K ) } = 2 p o ( K , θ ) � 2 π ◮ Cauchy-Crofton formula: U ( K ) = p o ( K , θ ) d θ 0

  18. default Rewriting of the expectations ◮ Mean defect area � E ( A ( K λ )) − A ( K ) = P ( x ∈ K λ ) d x R 2 \ K � e − λ ( A ( F o ( K ∪{ x } )) −A ( F o ( K ))) d x = R 2 \ K � 2 π p o ( K , θ ) 2 d θ where A ( F o ( K )) = 2 0 ◮ Mean defect perimeter � 2 π E ( U ( K λ )) − U ( K ) = E ( p o ( K λ , θ ) − p o ( K , θ )) d θ 0 ◮ Mean number of vertices: Efron-type relation E ( N ( K λ )) = λ ( E ( A ( F o ( K λ )) − A ( F o ( K ))) � 2 π λ →∞ 4 λ ∼ p o ( K , θ ) E ( p o ( K λ , θ ) − p o ( K , θ )) d θ 0

  19. default Sketch of proof, smooth case 1 2 @ F o ( K ) z ( s ) n s s 1 2 s n s @K o − 1 3 9 2 2 2 3 − 1 r A ( F o ( K ∪ { s + hn s } )) − A ( F o ( K )) ∼ h → 0 h 2 � s , n s � s

  20. default Sketch of proof, smooth case osculating circle of 1 2 @ F o ( K ) 2 @ F o ( K ) 1 α s z 00 ( s ) z 0 ( s ) k s k 2 ρ z ( s ) = h 2 k s k� r s cos α s z ( s ) s + hn s h α s n s s α s 1 2 ( s + hn s ) 1 2 s n s @K o − 1 3 9 2 2 2 3 − 1 r A ( F o ( K ∪ { s + hn s } )) − A ( F o ( K )) ∼ h → 0 h 2 � s , n s � s

  21. default Sketch of proof, smooth case n s m s,λ Y s,λ t s s X s,λ ∂K o ◮ m s ,λ : support point of K λ in direction n s ◮ ( X s ,λ , Y s ,λ ): coordinates of m s ,λ in the Frenet frame at s 1 3 Y s ,λ ) D 2 3 X s ,λ , λ ( λ → ( X , Y ) with explicit density. � 2 � 1 λ →∞ λ − 2 3 3 − 4 s � s , n s � − 2 3 Γ E ( p o ( K λ , n s ) − p o ( K , n s )) = E ( Y s ,λ ) ∼ 3 r 3 3

  22. default Problem 2: asymptotics for � K λ (no origin) ◮ Steiner point � 2 π st( K ) = 1 p o ( K , θ ) u θ d θ = argmin x A ( F x ( K )) π 0 ◮ K : convex body with Steiner point at o ◮ � K λ : cell containing K , conditional on S λ = { K ⊂ one cell } ◮ Z λ : nucleus of � K λ 1 D → N ( o , (4 π ) − 1 I 2 ). Conditional on S λ , λ 2 Z λ The expectation asymptotics of � K λ coincide with those of K λ when o = st( K ).

  23. default Problem 3: asymptotics for C λ ( D ) = C ( o |P λ \ D ) D K o ◮ D closed domain, o ∈ int( D ) ◮ C λ ( D ) = C ( o |P λ \ D ) ◮ K : convex body such that F o ( K ) is the largest flower in D ◮ D ∗ : maximal starlike set in D , with piecewise C 3 equation d ( · ) C λ ( D ) P → K in the Hausdorff metric � � � λ →∞ λ − 2 3 2 − 8 3 3 − 1 4 3 d ( θ ) − 2 3 Γ 2 ( d ( θ ) + d ′′ ( θ )) E ( A ( C λ ( D ))) − A ( K ) ∼ 3 d θ 3 � � � λ →∞ λ − 2 3 2 − 2 3 3 − 4 1 3 d ( θ ) − 2 2 3 Γ ( d ( θ ) + d ′′ ( θ )) E ( U ( C λ ( D ))) − U ( K ) ∼ 3 d θ 3 � � � 1 3 2 − 8 3 3 − 4 1 1 2 3 Γ ( d ( θ ) + d ′′ ( θ )) E ( N ( C λ ( D ))) ∼ 3 d ( θ ) 3 d θ λ →∞ λ 3

  24. default Problem 3: asymptotics for C λ ( D ) = C ( o |P λ \ D )

  25. default Concluding remarks ◮ Higher dimension ◮ Variances ◮ Similar results for the zero-cell of a Poisson line tessellation ◮ Inlets

  26. default Concluding remarks

  27. default Concluding remarks

  28. default Concluding remarks

  29. default Thank you for your attention!

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend