the pion photon transition form factor in qcd facts and
play

The pion-photon transition form factor in QCD: Facts and fancy P. - PowerPoint PPT Presentation

The pion-photon transition form factor in QCD: Facts and fancy P. Kroll Fachbereich Physik, Univ. Wuppertal and Univ. Regensburg Dubna, September 2010 Outline: The trans. form factor in coll. factorization The new BaBar data


  1. The pion-photon transition form factor in QCD: Facts and fancy P. Kroll Fachbereich Physik, Univ. Wuppertal and Univ. Regensburg Dubna, September 2010 Outline: The πγ trans. form factor in coll. factorization • • The new BaBar data • Ways out The mod. pert. approach • Generalization to η, η ′ , η c • • Summary based on ongoing work in collaboration with V. Braun and M. Diehl PK 1

  2. � � � e e � e � � � � � � + + e e + � Measuring the πγ form factor e space-like time-like Γ µν = − ie 2 F πγ ∗ ( Q 2 ) ǫ µναβ q α q ′ β γ ∗ γπ vertex: data from: BaBar(06) TPC/2 γ (90), CELLO(91) ηγ and η ′ γ at s = 112 GeV 2 CLEO(95,98) Q 2 < ∼ 8 GeV 2 ∼ Q 2 < ∼ 38 GeV 2 BaBar(09) 4 < also data on ηγ , η ′ γ , η c γ two-photon decay width of the mesons: normalization of FF at Q 2 = 0 L3(97), CLEO(95,98), BaBar(10) PK 2

  3. � � � � Theory: collinear factorization P P ( � ) � ( � ) � √ 1 � 2 f π F πγ ( Q 2 ) dx Φ π ( x, µ F ) T H ( x, Q 2 , µ R ) for large Q 2 = 3 0 � �� ln Q 2 1 1 + C F α s ( µ R ) � 1 2(1 − x ) − 9 x ln x 2 + � 3 2 ln 2 x − T NLO 2 + ln x � = H µ 2 xQ 2 2 π R � γ n /β 0 � α s ( µ F ) � � � C 3 / 2 Φ π ( x, µ F ) = 6 x (1 − x ) 1 + a n ( µ 0 ) (2 x − 1) n α s ( µ 0 ) n =2 , 4 ,... f π pion decay constant; µ F , µ R , µ 0 factorization, renormalization, initial scale a n embody soft physics convenient choice: µ F = µ R = Q MS scheme γ n anomalous dimensions (pos. fractional numbers, growing with n ) LO: Brodsky-Lepage (80) NLO: del Aguila-Chase (81); Braaten (83) Kadantseva et al(86) PK 3

  4. √ 1 + � a n ( µ F ) � � 2 f π Q 2 F πγ = � 1 /x � � 1 /x � = 3 LO: 3 due to evolution relative weights of the a n vary with ln Q 2 √ for ln Q 2 → ∞ Q 2 F πγ → Φ π → 6 x (1 − x ) = Φ AS 2 f π PK 4

  5. Two virtual photons 2 = 1 2 ( Q 2 + Q ′ 2 ) ; ω = Q 2 − Q ′ 2 Q Q 2 + Q ′ 2 √ 1 � � 2 f π � Φ π ( x, µ F ) 1 + α s ( µ R ) 2 , ω ) = F πγ ∗ ( Q dx K ( ω, x ) 2 1 − (2 x − 1) 2 ω 2 π 3 Q 0 √ 2 f π 1 − α s 2 F πγ ∗ = � � + O ( ω 2 ) for ω → 0 : Q 3 π ω → 0 limit Cornwall(66) a n contribute to order ω n Diehl-K-Vogt(01) α s corrections del Aguila-Chase (81) α 2 s corrections Melic-M¨ uller-Passek (03) parameter-free QCD prediction (not end-point sens., power corr. small) theor. status comparable with R = σ ( e + e − → hadrons) /σ ( e + e − → µ + µ − ) , but no data Bjorken sum rule, Ellis-Jaffe sum rule, .. PK 5

  6. Situation before the advent of the BaBar data 0.25 Q 2 F πγ 0.20 0.15 Q ′ 2 = 0 CELLO 0.10 close to NLO result evaluated CLEO97 mHSA 0.05 from asymptotic distribution amplitude 0.00 0.0 2.0 4.0 6.0 8.0 10.0 2 [GeV 2 ] Q remaining ≃ 10% can be explained easily but differently: non-asymptotic DA, low renormalization scale, twist-4 effects, quark transverse momenta, . . . K-Raulfs (95), Ong (96), Musatov-Radyushkin (97), Brodsky-Pang-Robertson (98), Yakovlev-Schmedding (00), Diehl-K-Vogt (01), Bakulev et al (03), . . . PK 6

  7. The new situation BaBar (09) 0.3 strong increase with Q 2 b a 2 , a 4 Q 2 | F ( Q 2 ) | [GeV] b √ a 2 � 0 . 25 b Q 2 / 10 GeV � b green: 2 f π 0.2 b b b b b b b c b b (to guide the eyes) b b b AS c b c b b c b b c b c b b c c b b c c b b c b c c b c b b c 0.1 fit AS: NLO corr. < 0 • BABAR ◦ CLEO a 2 (1 GeV) = 0 . 39 1 2 3 5 10 20 30 50 a 2 (1 GeV) = 0 . 39 , a 4 = 0 . 24 Q 2 [GeV 2 ] we have to worry: a substantial increase of FF is difficult to accomodate in fixed order pQCD corr. due to a n ( > 0 ) only shift NLO pred. upwards, don’t change shape (except unplausible solutions like a 2 ≃ 4 , a 4 ≃ − 3 . 5 in conflict with lattice QCD: a 2 (1 GeV) = 0 . 252 ± 0 . 143 Braun et al (06)) PK 7

  8. Ways out flat DA Φ ≡ 1 : � 1 x + M 2 /Q 2 � − 1 = ln [ Q 2 /M 2 + 1] Polyakov(09) Q 2 F πγ ∼ � 0 dx Radyushkin(09) with Gaussian w.f. ∼ k 2 ⊥ /x (1 − x ) � 1 xQ 2 dx � �� Q 2 F πγ ∼ → ln [ Q 2 / 2 σ ] � 1 − exp − x 2(1 − x ) σ 0 � broad DA also found from AdS/QCD ∼ x (1 − x ) Brodsky-de Teramond(06) but not by Mikhailov et al (10) QCD sum rules Dorokhov(10) non-pert. effects (chiral quarks, instantons) → ln [ Q 2 /M 2 q ] dispersion (LCSR) approach: Khodjamirian(09) corrections due to long-distance, hadron-like component of photon quark-transverse momenta and resummation of Sudakov-like effects: Braun-Diehl-K, Li-Mishima(09) PK 8

  9. The modified perturbative approach LO pQCD + quark transv. momenta + Sudakov suppr. Sterman et al (89,92) ⇒ coll. fact. a. for Q 2 → ∞ = ( k ⊥ fact. based on work by Collins-Soper) ~ exp [ � s ( � ; b ; Q )] l l Sudakov factor: higher order pQCD in NLL, resummed to all orders 1 √ S ∝ ln ln ( xQ/ 2Λ QCD ) exponentiation in b space ⇒ e − S + NLL + RG( µ F , µ R ) = ln (1 /b Λ QCD ) ( q − ¯ q separation) 0 with e − S = 0 for b > 1 / Λ QCD 1 0 � l ~ 0 1 b � � l QCD Φ π ( x, µ F ) exp [ − x (1 − x ) b 2 Ψ π ( x, b, µ F ) = 2 π f π ˆ ] √ 4 σ 2 6 π factorization scale µ F = 1 /b b plays role of IR cut-off: interface between soft gluons (in wave fct) and (semi-)hard gluons in Sudakov f. and T H � 1 � 1 / Λ QCD 3 π K 0 ( √ xQb ) 2 db 2 ˆ � � e − S √ F πγ = dx Ψ π 0 0 PK 9

  10. A remarkable property with the Gegenbauer expansion √ � � � Q 2 F πγ = 2 f π C 0 ( Q 2 , µ 0 , σ π ) 1 + a n ( µ 0 ) C n / C 0 n =2 , 4 , ··· C n / C 0 0.8 Q 2 → ∞ : C 0 → 1 and C n → 0 n 0.6 due to evolution 2 low Q 2 : strong suppr. of higher terms 0.4 4 0.2 6 increasing Q 2 : higher n terms become 8 10 gradually more important 0 1 2 3 5 10 20 30 50 100 300 Q 2 [GeV 2 ] only lowest few Gegenbauer terms influence results on F πγ Φ AS suffices for low Q 2 (see fit to CLEO data) PK 10

  11. Nature of corrections in m.p.a. can be understood by replacing e − S by Θ(1 / Λ QCD − b ) and wave fct ∝ δ ( k 2 ⊥ ) : √ xQ � √ xQ � Λ − 1 �� (coll. fact: suppression of bdbK 0 ( √ xQb ) = 1 QCD � 1 − Λ QCD K 1 xQ 2 Λ QCD large b only by pert. prop.) 0 √ xQ ≫ Λ QCD : K 1 term exponentially suppressed √ xQ ∼ Λ QCD : K 1 term of O (1) multiplication with distr. ampl. and integration over x � Λ 4 Λ 2 � F πγ ∼ 1 + a 2 + a 4 + . . . − 8 QCD Q 2 (1 + 6 a 2 + 15 a 4 + . . . ) + O QCD Q 4 Sudakov factor provides series of power suppressed terms which come from region of soft quark momenta ( x, 1 − x → 0 ) and grow with Gegenbauer index n intrinsic transverse momentum: power suppressed terms from all x which do not grow with n PK 11

  12. Fit to BaBar data present data allow to fix only one Gegenbauer coefficient Braun-Diehl-K. fit to CLEO and Babar data (initial scale 1 GeV ): a 2 = 0 . 25 (fixed from lattice Braun(06)) σ = 0 . 42 ± 0 . 07 GeV − 1 (trans. size parameter) a 4 = 0 . 07 ± 0 . 10 dashed line: Φ AS K.-Raulfs(95) fit 0.3 b Q 2 | F ( Q 2 ) | [GeV] b b b 0.2 b b b b b b c b b b b b b b c b c b c b b c b b c b c b c c b c b b c b c c b c b c b 0.1 • BaBar ◦ CLEO 1 2 3 5 10 20 30 50 Q 2 [GeV 2 ] PK 12

  13. Extension to ηγ and η ′ γ P = η, η ′ : F P γ = F 8 P γ + F 1 P γ F i P γ as F πγ except of diff. wave fct. and charge factors octet-singlet basis favored because of evolution behavior: flavor-octet part as for pion flavor-singlet part: due to mixing with the two-gluon Fock component n ( µ 0 ) ≃ 0 : evolution with γ (+) if intrinsic glue is small a g ≃ γ n n to NLO: also direct contribution from gg Fock state (K-Passek(03)) quark-flavor mixing scheme (Feldmann-K-Stech (98)) ⇒ 2 cos θ 8 F 8 − sin θ 1 F 1 Q 2 F ηγ = = 3 f 8 4 sin θ 8 F 8 + cos θ 1 F 1 Q 2 F η ′ γ √ = = ⇒ f 1 3 θ 8 = − 21 . 2 ◦ θ 1 = − 9 . 2 ◦ f 8 = 1 . 26 f π f 1 = 1 . 17 f π PK 13

  14. ut ut Results for ηγ and η ′ γ 0.4 ηγ η ′ γ 0.3 0.3 Q 2 | F ( Q 2 ) | [GeV] Q 2 | F ( Q 2 ) | [GeV] c b 0.2 c b c b c b c b 0.2 c b b c c b b c b c b c 0.1 c b 0.1 ◦ CLEO ◦ CLEO △ L3 1 2 3 5 10 20 30 50 1 2 3 5 10 20 30 50 Q 2 [GeV 2 ] Q 2 [GeV 2 ] preliminary BaBar data; ICHEP 2010, Paris dashed: Φ AS Feldmann-K.(97) dotted: asymptotic behavior solid: σ 8 = σ 1 = 0 . 76 ± 0 . 06 GeV − 1 a 8 a 1 2 ( µ 0 ) = − 0 . 10 ± 0 . 09 2 ( µ 0 ) = − 0 . 20 ± 0 . 07 PK 14

  15. Extension to η c γ 1.0 data BaBar(10) η c γ 0.8 √ b 6 e 2 2 | F ( Q 2 ) /F (0) | b c T H = b 0.6 xQ 2 + (1 + 4 x (1 − x )) m 2 c + k 2 b b ⊥ b 2nd scale, Sudakov unimportant 0.4 b b b ( x − 1 / 2) 2 b � � − σ 2 η c M 2 0.2 Φ η c = Nx (1 − x ) exp b η c x (1 − x ) • BaBar 1 2 3 5 10 20 30 50 Wirbel-Stech-Bauer(85) Q 2 [GeV 2 ] 1.0 solid (dashed, dotted) line: 0.8 m c = 1 . 35(1 . 49 , 1 . 21) GeV Q 2 | F ( Q 2 ) | [GeV] 0.6 η c PDG: m c = 1 . 25 ± 0 . 09 GeV 0.4 η ′ 0.2 in contrast to πγ form factor: η π behavior predicted Feldmann-K(97) 1 2 3 5 10 20 30 50 100 300 Q 2 [GeV 2 ] PK 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend