doru caraeni
play

Doru Caraeni CD-adapco, USA CFD Futures Conference, August 6-8, - PowerPoint PPT Presentation

Doru Caraeni CD-adapco, USA CFD Futures Conference, August 6-8, 2012 Why I did Residual-based schemes research ? - (1996) Leading the CFD/CAE group (Centrifugal Compressors) at COMOTI Bucharest - Challenge: to perform LES of turbulence inside


  1. Doru Caraeni CD-adapco, USA CFD Futures Conference, August 6-8, 2012

  2. Why I did Residual-based schemes research ? - (1996) Leading the CFD/CAE group (Centrifugal Compressors) at COMOTI Bucharest - Challenge: to perform LES of turbulence inside high-PR CC - Write a new CFD code (together with Aerospace Department at “ Polytechnica ” Institute Bucharest) for industrial LES - Found a few papers about early Residual-Distribution schemes - Learned more about these scheme at a VKI Advanced CFD course - Went to Lund Institute to learn LES of turbulence and develop a (hopefully) best-in-class LES algorithm, for industry (Dec.1997)

  3. A short early history of MU-RDS Multidimen idimensional ional Upwind d Residual dual Distribut bution ion scheme me : - Fluctuation-Splitting (RDS) proposed in 1986 by professor Phil Roe - Developed by professors and students at Michigan University (Roe), VKI (Deconinck), Bordeaux University (Abgrall), Polytechnica di Bari, Lund (Caraeni), Univ. of Leeds (Hubbard) etc. - Compact matrix distribution schemes for steady Euler and Navier-Stokes equations (E.van der Weide, H. Paillere), 1996. - Second order RD scheme for LES of turbulence using a residual- property preserving , dual time-step approach (Caraeni, 1999).

  4. A short early history of MU-RDS (cont.) Multidimen idimensional ional Upwind d Residual dual Distribut bution ion scheme: me: - Second order space-time RD scheme for unsteady simulations (2000, VKI) (using space-time integration/residual-distribution to achieve accuracy) - Third order RD scheme for steady inviscid flow simulations (2000, LTH) (node gradient-recovery for quadratic solution representation) - Third order RD scheme for the unsteady turbulent flow simulations (2001, LTH). (node gradient-recovery and residual-property satisfying) - Third order results with above gradient-recovery idea reported by Rad and Nishikawa (2002, MU). - High-order (>3) RD scheme for scalar transport equations (2002, BU & MU). (sub-mesh reconstruction for high-order solution representation) “ Third-order non-oscillatory fluctuation schemes for steady scalar conservation laws ” M. Hubbard, 2008.

  5. Ricchiuto, CEMRACS, 2012

  6. A 3 rd Order Residual-Distribution scheme for Navier-Stokes simulations (Residual-property satisfying formulation) (A Third Order Residual-Distribution Method for Steady/Unsteady Simulations: Formulation and Benchmarking, including LES, Caraeni, VKI, 2005)

  7. High-order RD scheme for Navier-Stokes equations      ( ) 0 u , ,     t j j c v  U F F U         , , , , j j j j t  ( ) ( ) u u u p , , , , i t i j j i ij j         ( ) ( ) ( ) ( ) e u h u T    , , , , , t j j i ij j j j U dv ,          t    c v ( , , , , ) U u u u e [( ) ] F F U dv 1 2 3 j j , j , t  Jameson dual-time   C V U F F , , , t j j j j algorithm    u 0 j        u u p  1 1 j j 1 j         C  V  F u u p F 2 2 j j j j 2 j       u u p   3 j 3 j 3 j           u h u u u T   j 1 1 j 2 2 j 3 3 j , j

  8. High-order RD scheme (cont.) for Navier-Stokes equations    c c Convection flux cell-residual F . dv T , j T    v v Diffusion flux cell-residual F . dv T , j T    uns Unsteady term cell-residual . U dv , T t T Update scheme for steady/unsteady simulations (Caraeni):    1 ,    n k 1 , 1  1 ,       n k n k T c v uns ( ) U U B T T T i i i V   , T i T i   T B I Upwind matrix residual T B i i  Distribution coefficient (bounded) i T (conservativity)

  9. High-order RD scheme (cont.) for Navier-Stokes equations Distribution schemes (for preconditioned system): 1 1      L ow D iffusion A ( LDA ) 1 K F n R R   , , i j U j i i i i 3 3  ,   T LDA 1 ( ) B K K 1 i i j      1 K R R j i i i i 3 1 L ax- W endroff ( LW )      1 K R R i i i i 3 1 1  ,     T LW 1 [ ( ) ] B I K K i j i 4 2 j Computes the convective 4    cell residual with second c K U T i i order accuracy (linear data) 1

  10. High-order RD scheme (cont.) How to construct a 3rd-order RDS (Ph.D. 2000, LTH): 1. Use (upwind or upwind-biased) uniformly bounded residual-distribution coefficients (linearity/accuracy preserving RD scheme), and apply to total cell- residual 2. Compute the total cell residual (convective + diffusive + unsteady terms) with the required accuracy: - we used condition-1 + linear solution, second order accurate integration for 2 nd order RDS - we need to use condition-1 + use quadratic reconstruction, 3 rd order accurate integration for 3 rd order RDS The idea is to use the same accuracy-preserving RD scheme, as for second order schemes, but compute the total cell residual with 3 rd order accuracy.

  11. High-order RD scheme (cont.) Convection residual discretization, 3rd order. Use parameter variable Z and   ( 1 , , , , ) Z u u u H assume a quadratic variation 1 2 3 over the tetrahedral cell. Z ,j computed with 2 nd order accuracy Cell-residual in integral form: (multi-step algorithm)  c     c c . . F dv F dS , T j i i  i i 0 1  ( ) 0 1  Z Z T T Z Z i i ( mid )    1 0 , , j j ( ) r r Z   Z Z 2 8 0 j       Z Z p 2  2  2 1 j 1 j     Z Z Z 1      c   1 2 3 ( ) F Z Z p p Z Z 2 2 j j  0 4   2   Z Z p   3 j 3 j   2 u Z Z     i 4 H c T j p 2

  12. High-order RD scheme (cont.) Convection residual discretization, 3rd order. 4 n        c c , j i c . { ( ) }  F dS F d   face ( ) I i Z Z d T j n k j  Z Z  1 i , T face j i J k i face i       ( ) n Z Z d j , i 0 j      ( ) Z Z d face i   k j       ( ) n Z Z p d , j i face 1 1 j j i   face i   6          c  i i   ( ) ( ) ( ) ( ) F n d n Z Z p d i i { } 0 1 Z Z H H d , , 0 1 j i j i 2 2 j j j   k j face face i i    , 1 i i face  0 1    i ( ) n Z Z p d   , j i 3 j 3 j   face i       ( ) ( ) j k  [ ] H H d A I ( ) n Z Z d   j , i , face HH j k 4 j i   face face i i [ ] I Pre-computed matrix , HH j k

  13. High-order RD scheme (cont.) Diffusion residual discretization, 3rd order.      v v v . F dv F ds , T j  T T Assuming a quadratic variation of the Z variables over the cell, the diffusive flux vector integral can be computed over the cell-face. Use the values of the Z variable and its gradients, defined in the nodes of the high-order FEM tetrahedral-cell. 4      v [( ) ( ) ] u u    v v    . k . , , F ds F n i i u ( ) face k  ,  T i   1 k T

  14. High-order RD scheme (cont.) Unsteady residual discretization , 3rd Order.     1 , 1 n k n n 3 4 U U U  2 nd order discretization in time, U  , t 2 . and 3 rd order in space: t 9         ( ) v ( ) . . U dv Q U dv , , T t t   0 T T    9 ( )  . ; I Q dv      ( ) v  ( ) . U Q dv , T t T   0     T 0 . 05 ; 0 ,.., 3 I V  T     0 . 20 ; 4 ,.., 9 I V  T

  15. High-order RD scheme (cont.) Monotone shock capturing   2  h  . 2 2 V   p       1. Shock detection or or ( ) ( ) # nodes   2   N p V av j 1 2. Blending between the high-order scheme and a first order positive RD scheme (the N-scheme)          T LDA N = 0 for a smooth flow ( 1 ). . i i i = 1 (discontinuity detected)    : ( , ,..) where f P

  16. Summary of this 3 rd order RD algorithm - Uses a Multi-D Upwind Residual-Distribution scheme - Formulated for fully unstructured grids (tetrahedrons), - Compact scheme, highly efficient parallel algorithm. - Implicit time integration (dual time-stepping algorithm). - 3 rd - order accuracy in space (using FEM integration) - 2 nd - order time discretization (BDF2 scheme) - Acceleration techniques: preconditioning , point- implicit relaxation, geometric multi-grid, etc.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend