the parameterized complexity of graph cyclability
play

. The Parameterized Complexity of Graph Cyclability .... .... .... - PowerPoint PPT Presentation

. .... .... .... .... .... .... . The Parameterized Complexity of Graph Cyclability .... .... .... .... . . Joint work with Petr A. Golovach, Marcin Kamiski, and Dimitrios M. Thilikos AGTAC, Koper, June 2015 Spyridon Maniatis ....


  1. . .... .... .... .... .... .... . The Parameterized Complexity of Graph Cyclability .... .... .... .... . . Joint work with Petr A. Golovach, Marcin Kamiński, and Dimitrios M. Thilikos AGTAC, Koper, June 2015 Spyridon Maniatis .... .. .. ... . ... . ... . ... . .. .. .. . . .. .. .. .

  2. . .. .. . . .. . . . . . .. . . .. . . .. .. . UoA Spyridon Maniatis which G is k -cyclable. . . Cyclability (or a way to unify connectivity and Hamiltonicity): . Can be thought as of a quantitive measure of Hamiltonicity We study (from the algorithmic point of view) a connectivity Introduction . .. . . .. . . . . .. . . .. . . .. . . .. . . .. . . .. .. . . .. . . .. . . .. . . .. . . The Parameterized Complexity of Graph Cyclability related parameter, namely cyclability [V. Chvátal, 1973]. A graph G is k -cyclable if every k vertices of V ( G ) lie in a common cycle. The cyclability of G is the maximum integer k for

  3. . .. .. . . .. . . . . . .. . . .. . . .. .. . UoA Spyridon Maniatis which G is k -cyclable. . . Cyclability (or a way to unify connectivity and Hamiltonicity): . Can be thought as of a quantitive measure of Hamiltonicity We study (from the algorithmic point of view) a connectivity Introduction . .. . . .. . . . . .. . . .. . . .. . . .. . . .. . . .. .. . . .. . . .. . . .. . . .. . . The Parameterized Complexity of Graph Cyclability related parameter, namely cyclability [V. Chvátal, 1973]. A graph G is k -cyclable if every k vertices of V ( G ) lie in a common cycle. The cyclability of G is the maximum integer k for

  4. . .. .. . . .. . . . . . .. . . .. . . .. .. . UoA Spyridon Maniatis which G is k -cyclable. . . Cyclability (or a way to unify connectivity and Hamiltonicity): . Can be thought as of a quantitive measure of Hamiltonicity We study (from the algorithmic point of view) a connectivity Introduction . .. . . .. . . . . .. . . .. . . .. . . .. . . .. . . .. .. . . .. . . .. . . .. . . .. . . The Parameterized Complexity of Graph Cyclability related parameter, namely cyclability [V. Chvátal, 1973]. A graph G is k -cyclable if every k vertices of V ( G ) lie in a common cycle. The cyclability of G is the maximum integer k for

  5. . . .. . . .. . . .. . . .. . . .. . .. . Natural question : Is there an efficient (polynomial?) UoA Spyridon Maniatis From the parameterized complexity point of view? cubic planar graphs). NO, because hamiltonian cycle is NP -hard (even for algorithm computing the cyclability of a graph? Introduction . . .. . . .. . . .. .. .. . . .. . . .. . . .. . . .. . . . . . . .. . . .. . .. . . . .. . . .. The Parameterized Complexity of Graph Cyclability

  6. . . .. . . .. . . .. . . .. . . .. . .. . Natural question : Is there an efficient (polynomial?) UoA Spyridon Maniatis From the parameterized complexity point of view? cubic planar graphs). NO, because hamiltonian cycle is NP -hard (even for algorithm computing the cyclability of a graph? Introduction . . .. . . .. . . .. .. .. . . .. . . .. . . .. . . .. . . . . . . .. . . .. . .. . . . .. . . .. The Parameterized Complexity of Graph Cyclability

  7. . . .. . . .. . . .. . . .. . . .. . .. . Natural question : Is there an efficient (polynomial?) UoA Spyridon Maniatis From the parameterized complexity point of view? cubic planar graphs). NO, because hamiltonian cycle is NP -hard (even for algorithm computing the cyclability of a graph? Introduction . . .. . . .. . . .. .. .. . . .. . . .. . . .. . . .. . . . . . . .. . . .. . .. . . . .. . . .. The Parameterized Complexity of Graph Cyclability

  8. . .. .. . . .. . . . . . .. . . .. . . .. .. . UoA Spyridon Maniatis annotated version of the problem: We actually consider, for technical reasons, the more general, Input: A graph G and a positive integer k . . . . p - Cyclability . . The Parameterized Problem . .. . . .. . . . . .. . . .. . . .. . . .. . . .. . . .. .. . . .. . . .. . . .. . . .. . . The Parameterized Complexity of Graph Cyclability Parameter: k . Question: Is G k -cyclable?

  9. . .. . . .. . . .. . . .. . . .. . . . . p - Annotated Cyclability . UoA Spyridon Maniatis problem. . . . . . The Annotated Version . .. . . .. .. .. . . .. . .. . . .. . . .. . . .. . . .. . . . . . .. . .. .. . . .. . . .. . . The Parameterized Complexity of Graph Cyclability Input: A graph G , a set R ⊆ V ( G ) and a positive integer k . Parameter: k . Question: Is it true that for every S ⊆ R with | S | ≤ k , there exists a cycle of G that meets all the vertices of S ? Of course, when R = V ( G ) we have an instance of the initial

  10. . .. . . .. . . .. . . .. . . .. . . . . p - Annotated Cyclability . UoA Spyridon Maniatis problem. . . . . . The Annotated Version . .. . . .. .. .. . . .. . .. . . .. . . .. . . .. . . .. . . . . . .. . .. .. . . .. . . .. . . The Parameterized Complexity of Graph Cyclability Input: A graph G , a set R ⊆ V ( G ) and a positive integer k . Parameter: k . Question: Is it true that for every S ⊆ R with | S | ≤ k , there exists a cycle of G that meets all the vertices of S ? Of course, when R = V ( G ) we have an instance of the initial

  11. . .. . . .. . . .. . . .. . . .. . . . .. results are: UoA Spyridon Maniatis restricted to cubic planar graphs. graphs. 2 The problem is in FPT when restricted to the class of planar 1 Cyclability is co-W[1] -hard (even for split-graphs), when We study the parameterized complexity of Cyclability . Our . Our results . .. . . .. .. . . . . . .. . . .. . .. .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . The Parameterized Complexity of Graph Cyclability parameterized by k . 3 No polynomial kernel unless NP ⊆ co-NP/poly , when

  12. . .. . . .. . . .. . . .. . . .. . . . .. results are: UoA Spyridon Maniatis restricted to cubic planar graphs. graphs. 2 The problem is in FPT when restricted to the class of planar 1 Cyclability is co-W[1] -hard (even for split-graphs), when We study the parameterized complexity of Cyclability . Our . Our results . .. . . .. .. . . . . . .. . . .. . .. .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . The Parameterized Complexity of Graph Cyclability parameterized by k . 3 No polynomial kernel unless NP ⊆ co-NP/poly , when

  13. . .. . . .. . . .. . . .. . . .. . . . .. results are: UoA Spyridon Maniatis restricted to cubic planar graphs. graphs. 2 The problem is in FPT when restricted to the class of planar 1 Cyclability is co-W[1] -hard (even for split-graphs), when We study the parameterized complexity of Cyclability . Our . Our results . .. . . .. .. . . . . . .. . . .. . .. .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . The Parameterized Complexity of Graph Cyclability parameterized by k . 3 No polynomial kernel unless NP ⊆ co-NP/poly , when

  14. . .. . . .. . . .. . . .. . . .. . . . .. results are: UoA Spyridon Maniatis restricted to cubic planar graphs. graphs. 2 The problem is in FPT when restricted to the class of planar 1 Cyclability is co-W[1] -hard (even for split-graphs), when We study the parameterized complexity of Cyclability . Our . Our results . .. . . .. .. . . . . . .. . . .. . .. .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . The Parameterized Complexity of Graph Cyclability parameterized by k . 3 No polynomial kernel unless NP ⊆ co-NP/poly , when

  15. . . . .. . . .. . .. .. . . .. . . .. . . . .. . UoA Spyridon Maniatis G that contains all vertices of S ? Parameter: k . Input: A split graph G and a positive integer k . . . p - Cyclability complement . Theorem 1 . the inputs are restricted to be split graphs. The p - Cyclability problem is co-W[1] -hard. This also holds if . . Theorem 1 . . .. . .. . .. . . .. . . . . . .. . . .. . . . .. . . .. . . .. . . .. . . .. . . .. . . .. The Parameterized Complexity of Graph Cyclability Reduction of the k - Clique problem to: Question: Is there an S ⊆ V ( G ) , | S | ≤ k s.t. there is no cycle of

  16. . . . . .. . . .. . .. . . . .. . . .. . .. Theorem 1 .. . UoA Spyridon Maniatis G that contains all vertices of S ? Parameter: k . Input: A split graph G and a positive integer k . . . p - Cyclability complement . . . Reduction of the k - Clique problem to: the inputs are restricted to be split graphs. The p - Cyclability problem is co-W[1] -hard. This also holds if . . Theorem 1 . .. . .. . .. . . .. . . . . . .. . . .. . . . .. . . .. . . .. . . .. . . .. . . .. . . .. The Parameterized Complexity of Graph Cyclability Question: Is there an S ⊆ V ( G ) , | S | ≤ k s.t. there is no cycle of

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend