the national superconducting cyclotron laboratory
play

The National Superconducting Cyclotron Laboratory @Michigan State - PowerPoint PPT Presentation

The National Superconducting Cyclotron Laboratory @Michigan State University U.S. flagship user facility for rare isotope research and education in nuclear science, astro-nuclear physics, accelerator physics, and societal applications Betty


  1. The National Superconducting Cyclotron Laboratory @Michigan State University U.S. flagship user facility for rare isotope research and education in nuclear science, astro-nuclear physics, accelerator physics, and societal applications Betty Tsang Symmetry Energy Project: To bring heavens down to earth

  2. Michigan State University

  3. Nuclear Physics : To bring heavens down to earth Person Earth Solar system Milky way Universe ~ x 1,000,000 Atom x 10,000 x 10,000 x 10,000 Eye Cell Atom Nucleus 1

  4. Nuclear Physics: 3 minutes after the Big Bang

  5. 13.7 Billion years after the Big Bang Nuclear medicine Star Physics Atom Nuclear Power Nuclear fusion

  6. The National Superconducting Cyclotron Laboratory @Michigan State University 曾敏兒 -- Betty Tsang Symmetry Energy Project: To bring heavens down to earth Outline 1. Introduction 2. From Chemistry (elements) to Nuclear physics (rare isotopes) 3. From NSCL to FRIB 4. From Nuclei to neutron star  Symmetry Energy 5. Density Dependence of Symmetry Energy 5. Results from Low density 6. Planned Experiments at high density HIC with radioactive beams Relevance to new observation of neutron star properties. .

  7. From Chemistry (Elements) to Nuclear Physics (Rare isotopes) organized by electrons Electron shell closure  Noble gas 208 Pb Electron number in neutral atom Proton Number Z Sn Ni Ca ~300 stable nuclei O ~2700 unstable He nuclei observed Neutron Number N

  8. Rare Isotope Beam production at NSCL CCF @ NSCL 64 Ni 11+ @12 MeV/u focal plane K500 cyclotron I2 – dispersive plane 9 Be target 64 Ni 27+ @140.00 MeV/u Coupled Cyclotron Facility K1200 cyclotron September 6, 2006 Michal Mocko 9

  9. Radioactive Ion Beam production at NSCL Rare Isotope Production 28 镍 36 Michal Mocko Thesis defense, MSU-NSCL September 6, 2006 Michal Mocko 10

  10. Radioactive Ion Beam production at NSCL Rare Isotope Production 28 Ni 30 28 Ni 36 Michal Mocko Thesis defense, MSU-NSCL September 6, 2006 Michal Mocko 11

  11. Nuclear Landscape Proton ~300 stable nuclei ~2700 unstable nuclei observed ~6000 predicted Discovery Potentials New isotopes Limit of nuclei existence Property of n-rich matter Next generation of RIB accelerators Image by Andy Sproles, Neutron Oak Ridge National Laboratory

  12. From NSCL to Facility for Rare Isotope Beams (FRIB)

  13. Status on the construction of Facility for Rare Isotope Beams (FRIB) 3/15/2015

  14. From Stable nuclei to Neutron-rich nuclei r = r 0 x A 1/3 (r 0 =1.2 fm)?? isospin dependence of nuclear radii neutron-skin nuclei 208 Pb Proton Number Z Sn neutron-halo nuclei Ni Ca O He 11 Be, 11 Li, 19 C... Hubble ST Neutron Number N

  15. From Nucleus to Neutron Star -- Nuclear Symmetry Energy Same physics governs n-rich nuclei also governs n-star neutron-skin nuclei 208 Pb Proton Number Z Sn Crab Pulsar Ni Ca O He Hubble ST Neutron Number N

  16. Equation of State of Gases Periodic Table Ideal gas Equation organized by electrons of State: PV=nRT

  17. Equation of State of Neutron Matter Hubble ST Neutron Star: balance of Gravity (pulls in) and Symmetry energy pressure (pushes out): Masses vs. Radii EoS of pure neutron matter: Symmetry Energy as function of pressure (density)

  18. Symmetry Energy in Nuclei − − 2 Z ( Z 1 ) ( A 2 Z ) = − − − 2/3 B a A a A a C a sym V S 1 / 3 A A − 2 ( A 2 Z ) − V S 2 / 3 ( a A a A ) 2 sym sym A Inclusion of surface terms in symmetry Proton Number Z Crab Pulsar Hubble ST Neutron Number N

  19. Nuclear Equation of State of asymmetric matter E/A ( ρ , δ ) = E/A ( ρ ,0) + δ 2 ⋅ S( ρ ) δ = ( ρ n - ρ p )/ ( ρ n + ρ p ) = (N-Z)/A Skyrme E/A ( ρ ,0) Density dependence of symmetry energy

  20. How to obtain the information about EoS using heavy ion collisions? Experiments : Models Accelerator: Projectile, Input: Projectile, target, energy. target, energy Simulate the collisions with the Detectors: Information of appropriate physics emitted particles – identity, Success depends on the spatial info, energy, yields comparisons of observables.  construct observables Theory must predict how reaction evolves from initial contact to final observables

  21. Constraining the EoS using Heavy Ion collisions E/A ( ρ , δ ) = E/A ( ρ ,0) + δ 2 ⋅ S( ρ ); δ = ( ρ n - ρ p )/ ( ρ n + ρ p ) = (N-Z)/A Au+Au collisions E/A = 1 GeV) pressure contours density contours Two observable due to the high pressures formed in the overlap region: – Nucleons are “squeezed out” above and below the reaction plane. – Nucleons deflected sideways in the reaction plane.

  22. Density dependence of Symmetry Energy E/A ( ρ , δ ) = E/A ( ρ ,0) + δ 2 ⋅ S( ρ ); δ = ( ρ n - ρ p )/ ( ρ n + ρ p ) = (N-Z)/A ?? Symmetry energy Danielewicz, Lacey, Lynch, Science 298,1592 (2002) symmetric matter 100 P (MeV/fm -3 ) RMF:NL3 10 Akmal 密度 Fermi gas Flow Experiment Kaons Experiment FSU Au 1 1 1.5 2 2.5 3 3.5 4 4.5 5 ρ / ρ 0

  23. Creating low to high density nuclear matter Xe+ Sn; E/A=50 MeV Akira Ono NuSYM13 Observables ρ =0.3-1 ρ 0 Neutron Star Nuclear masses (g.s. & IAS) observations Neutron skins Collective motion (movement of neutron against protons) Dipole polarizability Giant Monopole Resonance Pygmy Dipole Resonance HIC : Heavy Ion Collisions ρ >> ρ 0 HIC Neutron Star observations HIC : Heavy Ion Collisions

  24. Strategies used to study the symmetry energy with Heavy Ion collisions below E/A=100 MeV  Vary the N/Z compositions of Isospin degree of freedom projectile and targets  Measure N/Z compositions of − Z ( Z 1 ) = − + δ − 2 / 3 B a A a A a C V S 1 / 3 emitted particles A Proton Number Z − 2 ( A 2 Z ) − a sym • n & p yields A • isotopes yields: isospin diffusion  Simulate collisions with transport theory • Find the symmetry energy density dependence that Crab Pulsar describes the data. • Constrain the relevant input Neutron Number N Hubble ST transport variables.

  25. Isospin Diffusion observable to study E sym with Heavy Ion Collisions γ i S ( ρ )=12.5( ρ / ρ o ) 2/3 + C ( ρ / ρ o ) Tsang, Shi et al., PRL92, 062701(2004) Tsang et al., PRL 92 (2004) 062701 γ i =2  small Esym Projectile 124 Sn γ i =2 γ i =1/3  large Esym Target 112 Sn Isospin Diffusion; low ρ , E beam Bao-An Li et al., Phys. Rep. 464, 113 (2008) Tsang, Zhang et al., PRL122, 122701(2009)

  26. NSCL Experiment 07038: Precision Measurement of Isospin Diffusion • Investigates the density-dependence of the nuclear symmetry energy using isospin diffusion from residues – new observable 112,118,124 Sn+ 112,118,124 Sn Collisions • • Combines the MSU Miniball, the LASSA Array, & S800 Spectrograph Incoming Beam, Beam-like fragments 70 MeV/u 10<Z<50 Jack Winkelbauer, PhD thesis

  27. Experiment set up for NP0709 RIKEN, June 11-15, 2013 (USA/Japan/Korea/UK/ 零度角探 测器 Washington University microball

  28. Experimental Layout PhD thesis: Daniel Coupland, Michael Youngs, Rachel Hodges LASSA – charged particles Miniball – impact parameter Wall A 124 Sn+ 124 Sn; 112 Sn+ 112 Sn Wall B E/A=50 & 120 MeV 48 Ca+ 124 Sn; 48 Ca+ 112 Sn E/A=140 MeV Courtesy Mike Famiano Neutron walls – neutrons Forward Array – time start Proton Veto scintillators

  29. Isospin Diffusion( 同位旋 扩散 ) observable to study E sym with Heavy Ion Collisions( 重离子碰撞 ) Tsang et al., PRL 92 (2004) 062701 Projectile Neutron Star 124 Sn observations Target 112 Sn Isospin Diffusion; low ρ , E beam Bao-An Li et al., Phys. Rep. 464, 113 (2008) Tsang, Zhang et al., PRL122, 122701(2009)

  30. New observations of Neutron Stars (radius/Radii) Lattimar & Prakash S. Guillot, et al Astrophys. J. 772, 7 (2013), 1302.0023 too soft Steiner Suleimanov Very small Neutron Star radius rules out nearly all EOS

  31. New observations of Neutron Stars (radius/Radii) ? Ozel et al S. Guillot, et al Astrophys. J. Suleimanov Steiner 772, 7 (2013), 1302.0023

  32. Symmetry Energy at twice saturation density Experiments @ ~2 ρ 0 : New Observables: multiplex ratios to enhance the symmetry Accelerator: high energy energy signals (>300 MeV) radioactive π - / π + ; n/p; t/ 3 He ion beams  low intensity Detectors: Information of Simulate the collisions with the emitted particles – identity, appropriate physics spatial info, energy, yields Success depends on the  Time projection comparisons of observables. chamber

  33. Where? Dubna FRIB TRIUMF GSI NSCL ANL RAON, Korea Lanzhou GANIL Munich Notre LBNL Dame CERN Catania RIBF RIKEN Texas ISOLDE ORNL A&M NSC VECC Sao Paulo Existi ng Productions of high intensity high energy Radioactive Isotope Beams 3

  34. S π RIT Collaboration Time Projection Chamber to detect pions, charged particles at ρ∼2ρ 0 chamber SAMURAI pion Reconstruction Ion Tracker

Recommend


More recommend