the money value of a man mark huggett greg kaplan
play

The Money Value of a Man Mark Huggett Greg Kaplan 1 Common View: - PowerPoint PPT Presentation

The Money Value of a Man Mark Huggett Greg Kaplan 1 Common View: Most valuable asset that most people hold is their own human capital. Questions: What are the properties of the value of an individuals human capital? What are the


  1. The Money Value of a Man Mark Huggett Greg Kaplan 1

  2. Common View: Most valuable asset that most people hold is their own human capital. Questions: What are the properties of the value of an individual’s human capital? What are the properties of the associated returns? 2

  3. Value and Return Concepts: J � v j ≡ E j [ m j,k e k ] k = j +1 j +1 ≡ v j +1 + e j +1 R h v j What we do: (1) justify this notion of value and (2) analyze ( v j , R h j ) using US data . 3

  4. Motivation: 1. Portfolio advice. 2. International portfolio diversification puzzle 3. Welfare Gains of moving to a smoother consumption plan 4. Estimating preference parameters 4

  5. Preview of our Findings 1. Value - Far below the value of discounting future earnings at the risk- free rate - Stock component is smaller than the bond component - Large negative orthogonal component early in life 2. Returns - Mean returns very large early in life and decline with age - Small positive correlation with stock return 5

  6. Related Literature: 1. Value of Human Capital - Farr (1853), Weisbrod (1961), Becker (1975), ... discount earnings at a deterministic rate. Not useful for analyzing returns. 2. Return to Human Capital - Campbell (1996), Baxter and Jermann (1997), ... use aggregate earnings data - Huggett and Kaplan (2011) put bounds on values/returns. - Mincerian Returns literature focuses on a different notion of a return. 3. Portfolio Allocation - Campbell et al (2001), Benzoni, Collin-Dufresne and Goldstein (2007), Lynch and Tan (2011). - focus is on understanding what impacts portfolio composition 6

  7. Justification for the Notion of Value: Problem P1 max U ( c, n ) where c = ( c 1 , .., c J ) and n = ( n 1 , .., n J ) i ∈I a i i ∈I a i j R i 1 c j + � j +1 = e j + � j 2 e j = G j ( y j , n j , z j ), 0 ≤ n j ≤ 1 and a i J +1 ≥ 0 Important: U is concave Unimportant: Restrictions on G , number of assets, ... 7

  8. Problem P2 max U ( c, n ) i ∈I a i i ∈I a i j R i 1 c j + � j +1 + s j +1 v j + p j n j = s j ( v j + d j ) + � j 2 0 ≤ n j ≤ 1 and a i J +1 ≥ 0 Personalized prices: ( p j , v j ) 8

  9. Definitions: 1. m j,k ( z k ) = dU ( c ∗ ,n ∗ ) /dc k ( z k ) 1 P ( z k | z j ) - stochastic discount factor dU ( c ∗ ,n ∗ ) /dc j ( z j ) 2. v j ( z j ) = E [ � J k = j +1 m j,k d k | z j ] - value of human capital 3. d j ( z j ) = e ∗ j ( z j ) + p j ( z j ) n ∗ j ( z j ) - dividends 4. p j ( z j ) = dU ( c ∗ ,n ∗ ) /dn j ( z j ) dU ( c ∗ ,n ∗ ) /dc j ( z j ) - price of leisure 9

  10. Theorem: If ( c ∗ , n ∗ , e ∗ , y ∗ , a ∗ ) solves P1 and c ∗ is strictly positive, then ( c ∗ , n ∗ , a ∗ , s ∗ ) solves P2, where s ∗ j = 1 , when the agent takes ( v j , d j , p j ) as given. Intuition : P2 is a concave program. Necessary conditions to P1 are sufficient for P2. Extensions: value earnings and leisure components separately or allow financials frictions 10

  11. 1 Naive Value: v naive = E [ � J (1+ r ) k − j d k | z j ] j k = j +1 Our Notion of Value: v j = E [ � J k = j +1 m j,k d k | z j ] When will the two notions differ? J J E [ m j,k | z j ] E [ d k | z j ] + cov ( m j,k , d k | z j ) � � v j = k = j +1 k = j +1 When: E [ m j,k | z j ] < 1 / (1 + r ) k − j agent is on a corner When: cov ( m j,k , d k | z j ) < 0 11

  12. Simple Example max E [ � J j =1 β j − 1 u ( c j ) | z 1 ] subject to (1) c j + a j +1 ≤ a j (1 + r ) + e j , (2) c j ≥ 0 , a J +1 ≥ 0 c 1 − ρ u ( c ) = (1 − ρ ) - CRRA e j = � j k =1 z k and ln z k ∼ N ( µ, σ 2 ) i.i.d. (1 + r ) > 0 - one risk-free asset 12

  13. β exp ( ρµ − ρ 2 σ 2 Theorem: If 1 + r = 1 2 ) and initial assets are zero, then ( c j , a j +1 ) = ( e j , 0) , ∀ j solves the decision problem. Further- more, at this solution: (i) the value of human capital is v j ( z j ) = f j e j , k = j +1 β k − j exp (( k − j )[( − ρ + 1) µ + ( − ρ + 1) 2 σ 2 f j = � J 2 ]) . (ii) the return to human capital satisfies: j +1 = ( 1+ f j +1 (a) R h ) z j +1 f j β exp ( µρ + σ 2 j +1 | z j ] = 1 (b) E [ R h 2 (1 − (1 − ρ ) 2 )) 13

  14. Quantitative Analysis: Model Periods: age 20 − 65 Flat Earnings Profile: e 1 = 1 and µ = − σ 2 / 2 and σ ∈ [0 , . 3] Risk Aversion Parameter: ρ ∈ { 1 , 2 , 4 } β exp ( ρµ − ρ 2 σ 2 Interest Rate: 1 . 01 = 1 + r = 1 2 ) 14

  15. 40 45 40 35 ρ = 1 ρ = 2 35 30 ρ = 4 30 25 25 20 20 15 15 Naive value ρ = 1 10 10 ρ = 2 ρ = 4 5 5 0 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.05 0.1 0.15 0.2 0.25 0.3 σ : st dev earnings shocks σ : st dev earnings shocks (a) Value of human capital (b) Mean return human capital (%) 600 Marginal benefit ( ρ = 2) Total benefit ( ρ = 2) 500 400 300 200 100 0 0 0.05 0.1 0.15 0.2 0.25 0.3 σ : st dev earnings shocks (c) Benefit of moving to a smooth consumption plan (%) Figure 1: Human capital values and returns: simple example Notes: 42

  16. Marginal Welfare Gains - Alvarez and Jermann (2004) U ((1 + Ω( α )) c ) = U ((1 − α ) c + αc smooth ) z j dU ( c ) � J dc j ( z j ) ( c smooth ( z j ) − c j ( z j )) � j =1 j Ω ′ (0) = z j dU ( c ) � J dc j ( z j ) c j ( z j ) � j =1 E [ � J j =1 m 1 ,j c smooth | z 1 ] j Ω ′ (0) = 1 ( z 1 ) R i ( z 1 ) − 1 v e 1 ( z 1 ) + e 1 ( z 1 ) + � i ∈I a i 15

  17. Benchmark Model: U ( c 1 , ..., c J ) = W ( c 1 , F ( U ( c 2 , ..., c J )); j ) - Epstein-Zin utility W ( a, b ; j ) = [(1 − β ) a 1 − ρ + βψ j +1 b 1 − ρ ] 1 / (1 − ρ ) F ( x ) = ( E [ x 1 − α ]) 1 / (1 − α ) Two assets: bond and stock Exogenous earnings: e j = G j ( z j ) Extra restrictions: a s j +1 ≥ 0 and a s j +1 ≤ p ( a s j +1 + a b j +1 ) 16

  18. Empirical Framework I: log e i,j,t = u 1 t + u 2 i,j,t i,j,t = α i + κ j + ζ i,j,t + ν i,j,t u 2 ζ i,j,t +1 = ρζ i,j,t + η i,j,t +1 and ζ i, 0 ,t = 0 α ∼ N (0 , σ 2 α ) , η ∼ N (0 , σ 2 η (∆ u 1 t )) , ν ∼ N (0 , σ 2 ν (∆ u 1 t )) 17

  19. t , P t ) ′ where log R s Empirical Framework II: y t = ( u 1 t = ∆ P t p � y t = v + A i y t − i + ε t i =1 If y t ∼ I (1) can rewrite as VECM ( w t ≡ β ′ y t + µ ) p − 1 � � � � � � � � � � ∆ y t Γ i γ α ε t � = + ∆ y t − i + w t − 1 + β ′ γ β ′ Γ i 1 + β ′ α β ′ ε t w t i =1 � � � � � � � � � � ∆ y t Γ ∆ y t − 1 γ α ε t = + + β ′ γ β ′ Γ 1 + β ′ α β ′ ε t w t w t − 1 18

  20. Data Sources: Idiosyncratic Earnings: - PSID 1967- 1996 (three samples: FULL, HS and COL) - Male heads age 22-60 w/ annual earnings > 1 , 000 Aggregate Component: - PSID 1967-96 and CPS 1967-2009 (three samples) Asset Returns: Ken French’s Data Archive: (1) stock return is NYSE/AMEX/NASDAQ return, (2) bond return is based on 6-month TBill 19

  21. Table 1: Idiosyncratic Earnings Process Parameters Full College High School Sample Sub-sample Sub-sample ρ 0.957 0.959 0.902 σ 2 0.110 0.092 0.121 α av. σ 2 0.033 0.033 0.039 η σ 2 η ( L ) − σ 2 η ( H ) 0.020 0.012 0.025 av. σ 2 0.150 0.151 0.147 ε Linear time trend in σ 2 0.0011 0.0014 0.0013 η 20

  22. Table 3: Steady-State Statistics for the Aggregate Process Full Sample Data No Cointegration With Cointegration logR b E � � 0.012 0.012 0.012 t E (log R s 0.041 0.045 0.047 t ) E � ∆ u 1 � -0.002 -0.004 -0.003 t ∆ u 1 � � sd 0.025 0.025 0.025 t sd (log R s t ): 0.187 0.187 0.188 ∆ u 1 t , log R s corr � � 0.184 0.177 0.172 t corr � ∆ u 1 t , ∆ u 1 � 0.425 0.441 0.420 t − 1 corr � log R s t , log R s � 0.057 0.055 0.039 t − 1 ∆ u 1 t log R s corr � � 0.372 0.398 0.390 t − 1 corr � log R s t , ∆ u 1 � -0.292 -0.270 -0.292 t − 1 21

  23. Table 3: Steady-State Statistics for the Aggregate Process College Sub-sample Data No Cointegration With Cointegration logR b E � � 0.012 0.012 0.012 t E (log R s 0.041 0.040 0.045 t ) E � ∆ u 1 � 0.000 -0.001 -0.001 t ∆ u 1 � � sd 0.023 0.023 0.023 t sd (log R s t ): 0.187 0.187 0.186 ∆ u 1 t , log R s corr � � 0.248 0.251 0.243 t corr � ∆ u 1 t , ∆ u 1 � 0.346 0.341 0.342 t − 1 corr � log R s t , log R s � 0.057 0.084 0.050 t − 1 ∆ u 1 t log R s corr � � 0.377 0.387 0.367 t − 1 corr � log R s t , ∆ u 1 � -0.225 -0.235 -0.229 t − 1 22

  24. Table 3: Steady-State Statistics for the Aggregate Process High School Sub-sample Data No Cointegration With Cointegration logR b E � � 0.012 0.012 0.012 t E (log R s 0.041 0.045 0.055 t ) E � ∆ u 1 � -0.007 -0.010 -0.008 t ∆ u 1 � � sd 0.030 0.030 0.030 t sd (log R s t ): 0.187 0.187 0.190 ∆ u 1 t , log R s corr � � 0.207 0.194 0.192 t corr � ∆ u 1 t , ∆ u 1 � 0.386 0.416 0.408 t − 1 corr � log R s t , log R s � 0.057 0.047 0.037 t − 1 ∆ u 1 t log R s corr � � 0.387 0.420 0.420 t − 1 corr � log R s t , ∆ u 1 � -0.289 -0.261 -0.277 t − 1 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend