the maximum clique problem mcp
play

The Maximum Clique Problem (MCP) You are given: An undirected - PowerPoint PPT Presentation

The Maximum Clique Problem (MCP) You are given: An undirected graph G = ( V , E ) , where - V = {1,., n } - E V x V and are asked to Find the largest complete subgraph (clique) of G The problem is known to be NP-hard, and so is


  1. The Maximum Clique Problem (MCP) You are given: • An undirected graph G = ( V , E ) , where - V = {1,…., n } ⊆ - E V x V and are asked to • Find the largest complete subgraph (clique) of G The problem is known to be NP-hard, and so is problem of determining just the size of the maximum clique. Pardalos and Xue (1994) provide a review of the MCP with 260 references.

  2. The Maximum Clique Problem (MCP) Affrontando il problema MCP in termini di rete neurale: • Trasformare MCP da problema discreto a problema continuo Nell’esempio del TSP con il modello di Hopfield, non è detto che ci sia il percorso inverso (potremmo ottenere ad esempio una matrice che non ha significato); in questo nuovo problema MCP, la bidirezionalità è d’obbligo.

  3. Some Notation Given an arbitrary graph G = ( V , E ) with n nodes: If C V , x c will denote its characteristic vector which is defined as ⊆ •  ∈ 1 C , if i C = x c  i  0 , otherwise S n is the standard simplex in R n : •   n ∑ = ∈ = ≥ ∀ n   S x R x and x i : 1 0 , n i i   = i 1 • A =(a ij ) is the adjacency matrix of G :  1 , if v ~ v = i j  a ij  otherwise 0 ,

  4. Infeasible Maxima in Motzkin-Straus Si consideri la funzione continua: = ∑ ∑ n n ( ) ′ = f x x A x a x x ij i j = = i 1 j 1 x ' dove è il vettore trasposto e A è la matrice di adiacenza. Lagrangiano del grafo: ( ) = ∑ f x x x i j ∈ i j , E esempio: 1 ( ) = + f x x , , x x x x x 1 2 3 1 2 1 3 2 3

  5. Continuous Formulation of MAX-CLIQUE Il ponte che crea Motzkin-Straus è unidirezionale; solo se il vettore restituito è nella forma di vettore caratteristico allora c’è bidirezionalità. Nell’esempio visto ci sono due massimi globali : T T     1 1 1 1 ′ ′′ = =     x , ,0 x ,0,     2 2 2 2 Si dimostra che sono massimi globali anche tutti i punti del segmento x’ - x’’ α − α T   1 1 [ ] ∀ α ∈   , , 0,1 ovvero tutti i punti ; non essendo vettori caratteristici   2 2 2 (soluzioni spurie) non è possibile estrarre la clique massima. La soluzione con- 1 siste nel sommare alla diagonale principale di A 2   1 ( ) ( ) 1 = + ′ ′ = = T + T   f x x A I x f x x A x A A I   2 2

  6. Infeasible Maxima in Motzkin-Straus Teorema V e x c vettore caratteristico allora: ⊆ Dato C - C è una clique massima di G x c è un massimo globale di in f S n f - C è una clique massimale di G x c è un massimo locale di in S n - tutti i massimi locali sono stretti e sono vettori caratteristici

  7. Evolutionary Games Developed in evolutionary game theory to model the evolution of behavior in animal conflicts. Assumptions • A large population of individuals belonging to the same species which compete for a particular limited resource • This kind of conflict is modeled as a game, the players being pairs of randomly selected population members • Players do not behave “rationally” but act according to a pre-programmed behavioral pattern, or pure strategy • Reproduction is assumed to be asexual • Utility is measured in terms of Darwinian fitness, or reproductive success

  8. Notations { } = • is the set of pure strategies J 1, L , n ( ) t x t • i is the proportion of population members playing strategy at time i x ′ ( ) = • x x 1 , L , The state of population at a given instant is the vector n ( ) σ • x x x Given a population state , the support of , denoted , is defined as x the set of positive components of , i.e., ( ) { } σ = ∈ > x i J x : 0 i

  9. Payoffs ( ) × = n n Let be the payoff (or fitness) matrix. A a ij a i represents the payoff of an individual playing strategy against an opponent ij j ( ) ∈ playing strategy . i j , J x i If the population is in state , the expected payoff earnt by an – strategist is: n ∑ ( ) ( ) π = = x a x Ax i ij j i = j 1 while the mean payoff over the entire population is: n ∑ ( ) ( ) ′ π = π = x x x x Ax i i = i 1

  10. Replicator Equations Developed in evolutionary game theory to model the evolution of behavior in animal conflicts (Hofbauer & Sigmund, 1998; Weibull, 1995). ( ) × = Let be a non-negative real-valued n n matrix, and let W w ij = ∑ n ( ) ( ) π t w x t i ij j = j 1 Continuous-time version:   n d x t ( ) ( ) ( ) ∑ ( ) ( ) = π − π   x t t x t t   i i i j j dt   = j 1 Discrete-time version: ( ) ( ) π x t t ( ) + = i i x t 1 ∑ ( ) ( ) i n π x t t = j j j 1

  11. Replicator Equations & Fundamental Theorem of Selection S is invariant under both dynamics, and they have the same stationary points. n W ′ = Theorem: If , then the function W ( ) ′ = F x x W x is strictly increasing along any non-constant trajectory of both continuous-time and discrete-time replicator dynamics

  12. Mapping MCP’s onto Relaxation Nets n To (approximately) solve a MCP by relaxation, simply construct a net having { } units, and a -weight matrix given by 0,1 1 = + W A I n 2 where A is the adjacency matrix of G. Example:

  13. Mapping MCP’s onto Relaxation Nets The system starting from u(0) will maximize the Motzkin-Straus function and will converge to a fixed point u * which corresponds to a (local) maximum of . f The value 1 ∗ = k ( ) ∗ − 1 2 f u can be regarded as an approximation of the maximum clique size. Con –measure si misura la qualità Q − f f = ave RE Q − α f ave f f dove è il termine di confronto rispetto alla media, è la replicator ave RE α Q equation e è il valore ottimale. Quando 1 il risultato è buono.

  14. Experimental Setup Experiments were conducted over random graphs having: n • size: = 10, 25, 50, 75, 100 δ • density: = 0.10, 0.25, 0.50, 0.75, 0.90 Comparison with Bron-Kerbosch (BK) clique-finding algorithm (1974). δ n δ For each pair ( , ) 100 graphs generated randomly with size and density ≈ n . δ n The case = 100 and = 0.90 was excluded due to the high cost of BK algorithm. Total number of graphs = 2400. n 10 25 50 75 100 δ 0.10 0.99 (54) 0.99 (36) 0.99 (53) 0.97 (59) 0.92 (82) 0.25 0.99 (54) 0.99 (64) 0.99 (84) 1.00 (98) 0.97 (112) 0.50 1.00 (56) 0.99 (118) 0.99 (153) 0.96 (160) 0.90 (187) 0.75 1.00 (99) 1.00 (175) 1.00 (268) 1.00 (284) 1.00 (369) 0.90 1.00 (119) 1.00 (224) 1.00 (367) 0.99 (513) ---- Values of Q-measure for various sizes and densities

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend