towards a complexity theory for the congested clique
play

Towards a Complexity Theory for the Congested Clique Janne H. - PowerPoint PPT Presentation

Towards a Complexity Theory for the Congested Clique Janne H. Korhonen Jukka Suomela Aalto University The Congested Clique a fully connected distributed model specialisation of the standard CONGEST The Congested Clique n nodes


  1. Towards a Complexity Theory for the Congested Clique Janne H. Korhonen Jukka Suomela Aalto University

  2. The Congested Clique • a fully connected distributed model • specialisation of the standard CONGEST

  3. The Congested Clique • n nodes • communication graph = clique • input graph = arbitrary graph • synchronous, error-free • O(log n ) bandwidth/edge/round • unlimited local computation • a fully connected distributed model • time measure: number of rounds • specialisation of the standard CONGEST

  4. The Congested Clique local input: incident edges • n nodes • communication graph = clique • input graph = arbitrary graph • synchronous, error-free • O(log n ) bandwidth/edge/round • unlimited local computation • a fully connected distributed model • time measure: number of rounds • specialisation of the standard CONGEST

  5. The Congested Clique • everything O( n /log n ) • very good upper bounds for many problems • a fully connected distributed model • specialisation of the standard CONGEST

  6. The Congested Clique • everything O( n /log n ) • very good upper bounds for many problems • No lower bounds • no bottlenecks or distances • CONGEST/LOCAL techniques fail • connections to circuit complexity • a fully connected distributed model • specialisation of the standard CONGEST

  7. The Congested Clique This work: more “traditional” complexity theory view • a fully connected distributed model • specialisation of the standard CONGEST

  8. What does the complexity landscape of the congested clique look like? Turing LOCAL clique machines

  9. Highlight 1: Time Hierarchy there are decision problems of any possible complexity in the congested clique Theorem. For increasing computable functions f , g such that f = o ( g ) , we have CLIQUE( f ( n )) ⊊ CLIQUE( g ( n ))

  10. Nonuniform protocols [Applebaum, Kowalski, Patt-Shamir & Rosén] x 7 x 8 x 6 • fix n , bandwidth B x 9 x 5 • each node i gets k input bits x i • want to compute some binary 
 function h ( x 1 ,…, x n ) x 4 x 10 x 11 x 3 x 12 x 2 x 1

  11. Nonuniform protocols [Applebaum, Kowalski, Patt-Shamir & Rosén] x 7 x 8 x 6 • fix n , bandwidth B x 9 x 5 • each node i gets k input bits x i • want to compute some binary 
 function h ( x 1 ,…, x n ) x 4 x 10 • most functions require k / B rounds 
 x 11 x 3 (counting argument) x 12 x 2 x 1

  12. Nonuniform protocols [Applebaum, Kowalski, Patt-Shamir & Rosén] x 7 x 8 x 6 • fix n , bandwidth B x 9 x 5 • each node i gets k input bits x i • want to compute some binary 
 function h ( x 1 ,…, x n ) x 4 x 10 • most functions require k / B rounds 
 x 11 x 3 (counting argument) x 12 x 2 x 1 “ Lifting” into time hierarchy theorem • for each n , pick a function h n with complexity g ( n ) in deterministically computable manner • similar to time hierarchy for circuit complexity

  13. What is the correct notion of “interesting problem?” ( easy to verify, difficult to solve ) LOCAL: clique: centralised: LCL problems ??? NP-complete

  14. Highlight 2: NCLIQUE(1) Problems a natural congested clique analogue for NP problems and LCL problems (LOCAL model)

  15. Highlight 2: NCLIQUE(1) Problems a natural congested clique analogue for NP problems and LCL problems (LOCAL model) x 7 ,y 7 NCLIQUE(1) x 8 ,y 8 x 6 ,y 6 • Constant-round verifier that takes x 9 ,y 9 x 5 ,y 5 an input and a certificate • Yes-instance if and only if there is x 4 ,y 4 x 10 ,y 10 an accepting certificate x 11 ,y 11 x 3 ,y 3 • Corresponding search problem : find an accepting certificate x 12 ,y 12 x 2 ,y 2 x 1 ,y 1

  16. Highlight 2: NCLIQUE(1) Problems a natural congested clique analogue for NP problems and LCL problems (LOCAL model) x 7 ,y 7 NCLIQUE(1) Certificate length? x 8 ,y 8 x 6 ,y 6 x 9 ,y 9 x 5 ,y 5 x 4 ,y 4 x 10 ,y 10 x 11 ,y 11 x 3 ,y 3 x 12 ,y 12 x 2 ,y 2 x 1 ,y 1

  17. Highlight 2: NCLIQUE(1) Problems a natural congested clique analogue for NP problems and LCL problems (LOCAL model) x 7 ,y 7 Certificate length? x 8 ,y 8 x 6 ,y 6 x 9 ,y 9 x 5 ,y 5 • NCLIQUE(1) problems always have x 4 ,y 4 x 10 ,y 10 a verifiers/certificates with O ( n log n ) bits per node x 11 ,y 11 x 3 ,y 3 x 12 ,y 12 x 2 ,y 2 x 1 ,y 1

  18. Highlight 2: NCLIQUE(1) Problems a natural congested clique analogue for NP problems and LCL problems (LOCAL model) x 7 ,y 7 Examples: x 8 ,y 8 x 6 ,y 6 x 9 ,y 9 x 5 ,y 5 Maximal independent set • Hamiltonian cycle • x 4 ,y 4 3-colouring x 10 ,y 10 • Canonical problem family: 
 • x 11 ,y 11 x 3 ,y 3 edge labelling problems x 12 ,y 12 x 2 ,y 2 x 1 ,y 1

  19. Highlight 2: NCLIQUE(1) Problems a natural congested clique analogue for NP problems and LCL problems (LOCAL model) x 7 ,y 7 Examples: x 8 ,y 8 x 6 ,y 6 x 9 ,y 9 x 5 ,y 5 Maximal independent set • ? Hamiltonian cycle • CLIQUE(1) = NCLIQUE(1) x 4 ,y 4 3-colouring x 10 ,y 10 • Canonical problem family: 
 • x 11 ,y 11 x 3 ,y 3 edge labelling problems x 12 ,y 12 x 2 ,y 2 x 1 ,y 1

  20. More on nondeterminism NCLIQUE( T ( n )) • Certificate size is bounded by the running time of the verifier • Allows extension of time hierarchy theorem to NCLIQUE : NCLIQUE( f ( n )) ⊊ NCLIQUE( g ( n )) Constant-round decision hierarchy • Constant rounds, alternating quantifiers: Σ 1 , Π 1 , Σ 2 , Π 2 , … • Analogue(s) of polynomial hierarchy • Certificate size matters much more

  21. Reduction-based perspective to relationships between natural problems? ( subpolynomial vs. polynomial ) • Triangle: O ( n 0.157 ) • MST: O (1) • APSP: O ( n 1/3 ) • MIS: O (log log Δ ) • k -subgraph: O ( n 1-2/k )

  22. Highlight 3: Fine-grained Complexity fine-grained complexity is a useful tool for understanding polynomial complexities

  23. Highlight 3: Fine-grained Complexity fine-grained complexity is a useful tool for understanding polynomial complexities δ ( P ) = inf { δ : P ∈ CLIQUE( n δ ) }

  24. Highlight 3: Fine-grained Complexity fine-grained complexity is a useful tool for understanding polynomial complexities δ ( P ) = inf { δ : P ∈ CLIQUE( n δ ) } δ (Ring-MM) ≤ 0.157… δ (APSP) ≤ 1/3 δ ( k -IS) ≤ 1 − 2/k δ ( k -COL) ≤ 1

  25. Highlight 3: Fine-grained Complexity fine-grained complexity is a useful tool for understanding polynomial complexities δ ( P ) = inf { δ : P ∈ CLIQUE( n δ ) } δ (Ring-MM) ≤ 0.157… • Proving relationships of form δ (APSP) ≤ 1/3 δ ( P ) ≤ δ ( Q ) via δ ( k -IS) ≤ 1 − 2/k subpolynomial reductions δ ( k -COL) ≤ 1

  26. 0 1-2/ ω 1/3 1-2/k 1-1/k 1 0.2096 Semiring Ring MM MM (min,+) APSP APSP APSP MM w/ud/(1+ ε ) uw/d w/d APSP w/ud SSSP SSSP SSSP APSP w/ud/(1+ ε ) w/ud w/d w/ud/(2- ε ) Boolean APSP MinVC MM uw/ud Transitive SSSP SSSP size 3 size k k-cycle k-DS MaxIS closure uw/ud uw/d subgraph subgraph Triangle/ BFS tree k-IS k-COL 3-IS

  27. 0 1-2/ ω 1/3 1-2/k 1-1/k 1 0.2096 Semiring Ring MM MM (min,+) APSP APSP APSP MM w/ud/(1+ ε ) uw/d w/d APSP w/ud SSSP SSSP SSSP APSP w/ud/(1+ ε ) w/ud w/d w/ud/(2- ε ) Boolean APSP MinVC MM uw/ud Transitive SSSP SSSP size 3 size k k-cycle k-DS MaxIS closure uw/ud uw/d subgraph subgraph Triangle/ BFS tree k-IS k-COL 3-IS

  28. 0 1-2/ ω 1/3 1-2/k 1-1/k 1 0.2096 Semiring Ring MM MM (min,+) APSP APSP APSP MM w/ud/(1+ ε ) uw/d w/d APSP w/ud SSSP SSSP SSSP APSP w/ud/(1+ ε ) w/ud w/d w/ud/(2- ε ) Boolean APSP MinVC MM uw/ud Transitive SSSP SSSP size 3 size k k-cycle k-DS MaxIS closure uw/ud uw/d subgraph subgraph Triangle/ BFS tree k-IS k-COL 3-IS

  29. 0 1-2/ ω 1/3 1-2/k 1-1/k 1 0.2096 Semiring Ring MM MM (min,+) APSP APSP APSP MM w/ud/(1+ ε ) uw/d w/d APSP w/ud SSSP SSSP SSSP APSP w/ud/(1+ ε ) w/ud w/d w/ud/(2- ε ) Boolean APSP MinVC MM uw/ud Transitive SSSP SSSP size 3 size k k-cycle k-DS MaxIS closure uw/ud uw/d subgraph subgraph Triangle/ BFS tree k-IS k-COL 3-IS

  30. 0 1-2/ ω 1/3 1-2/k 1-1/k 1 0.2096 Semiring Ring MM MM (min,+) APSP APSP APSP MM w/ud/(1+ ε ) uw/d w/d APSP w/ud SSSP SSSP SSSP APSP w/ud/(1+ ε ) w/ud w/d w/ud/(2- ε ) Boolean APSP MinVC MM uw/ud Transitive SSSP SSSP size 3 size k k-cycle k-DS MaxIS closure uw/ud uw/d subgraph subgraph Triangle/ BFS tree k-IS k-COL 3-IS

  31. 0 1-2/ ω 1/3 1-2/k 1-1/k 1 0.2096 Semiring Ring MM MM (min,+) APSP APSP APSP MM w/ud/(1+ ε ) uw/d w/d APSP w/ud k -vertex cover: O ( k ) rounds SSSP SSSP SSSP APSP w/ud/(1+ ε ) w/ud w/d w/ud/(2- ε ) Boolean APSP MinVC MM uw/ud Transitive SSSP SSSP size 3 size k k-cycle k-DS MaxIS closure uw/ud uw/d subgraph subgraph Triangle/ BFS tree k-IS k-COL 3-IS

  32. Closing remarks: Beyond the congested clique? message passing 
 clique models ( k-machine model, BSP, MapReduce, MPC,… )

  33. Closing remarks: Beyond the congested clique? message passing 
 clique models n vertices in input n vertices in input n processors p < n processors

  34. Closing remarks: Beyond the congested clique? message passing 
 clique models n vertices in input n vertices in input n processors p < n processors

  35. Thanks! Questions? (arXiv:1705.03284)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend