the linear non linear substitution monad
play

The Linear-Non-Linear Substitution Monad OWLS, 15 July 2020 - PowerPoint PPT Presentation

The Linear-Non-Linear Substitution Monad OWLS, 15 July 2020 Christine Tasson (tasson@irif.fr) Joint work with Martin Hyland at https://arxiv.org/abs/2005.09559 Institut de Recherche en Informatique Fondamentale Roadmap: The linear-non-linear


  1. The Linear-Non-Linear Substitution Monad OWLS, 15 July 2020 Christine Tasson (tasson@irif.fr) Joint work with Martin Hyland at https://arxiv.org/abs/2005.09559 Institut de Recherche en Informatique Fondamentale

  2. Roadmap: The linear-non-linear substitution monad Motivation: • Differential λ -calculus Goal: • Axiomatisation using generalized multicategories. Tool: • A colimit construction applied to combine 2-monads on Cat Results: • The colimit is a 2-monad. • Charaterization of its algebras. 1

  3. Linear-non-linear substitution Substitutions in differential λ -calculus

  4. Differential λ -Calculus (Ehrhard-Regnier 2003, Ehrhard 2018) Semantical observation: in quantitative models of Linear Logic, programs are interpreted by smooth functions, hence differentiation. Programs Functions M , N f , g Variable x x Variable Abstraction λ x . M f : x �→ f ( x ) Map Application f ◦ g : x �→ f ( g ( x ) ) Composition ( λ x . M ) N Differentiation D λ x . M · N u , x �→ Df x ( u ) Derivation 2

  5. Linear and Non-Linear substitutions in Differential λ -calculus Linear approximation Substitution f(x) Df (u) ( λ x . M ) N → M [ x \ N ] x � ∂ M � D λ x . M · N → λ x . ∂ x · N x 3

  6. Linear and Non-Linear substitutions in Differential λ -calculus Linear approximation Substitution f(x) Df (u) ( λ x . M ) N → M [ x \ N ] x � ∂ M � D λ x . M · N → λ x . ∂ x · N x 3

  7. Linear-non-linear substitution Type system and term calculus

  8. A term calculus for Linear-non-linear Logic (Benton-Bierman-de Paiva-Hyland 1993, Barber 1996) x 1 : a 1 , . . ., x ℓ : a ℓ | y 1 : b 1 , . . ., y n : b n ⊢ t : c � ����������������� �� ����������������� � � ������������������� �� ������������������� � Linear Non-Linear Γ , x : a | ∆ ⊢ t : b Linear rules: x : a | ∆ ⊢ x : a Γ | ∆ ⊢ λ x a . t : a ⊸ b Γ ′ | ∆ ⊢ t : a Γ | ∆ ⊢ s : a ⊸ b Γ , Γ ′ | ∆ ⊢ � s � t : b Γ | ∆ , x : a ⊢ t : b Non-linear rules: Γ | ∆ , x : b ⊢ x : b Γ | ∆ ⊢ λ x a . t : a → b Γ | ∆ ⊢ s : a → b · | ∆ ⊢ t : a Γ | ∆ ⊢ ( s ) t : b Γ , x : a | ∆ ⊢ t : b Linear-non-linear rule: Γ | ∆ , x : a ⊢ t : b 4

  9. A term calculus for Linear-non-linear Logic (Benton-Bierman-de Paiva-Hyland 1993, Barber 1996) x 1 : a 1 , . . ., x ℓ : a ℓ | y 1 : b 1 , . . ., y n : b n ⊢ t : c � ����������������� �� ����������������� � � ������������������� �� ������������������� � Linear Non-Linear Γ , x : a | ∆ ⊢ t : b Linear rules: x : a | ∆ ⊢ x : a Γ | ∆ ⊢ λ x a . t : a ⊸ b Γ ′ | ∆ ⊢ t : a Γ | ∆ ⊢ s : a ⊸ b Γ , Γ ′ | ∆ ⊢ � s � t : b Γ | ∆ , x : a ⊢ t : b Non-linear rules: Γ | ∆ , x : b ⊢ x : b Γ | ∆ ⊢ λ x a . t : a → b Γ | ∆ ⊢ s : a → b · | ∆ ⊢ t : a Γ | ∆ ⊢ ( s ) t : b Γ , x : a | ∆ ⊢ t : b Linear-non-linear rule: Γ | ∆ , x : a ⊢ t : b 4

  10. A term calculus for Linear-non-linear Logic (Benton-Bierman-de Paiva-Hyland 1993, Barber 1996) 4

  11. A term calculus for Linear-non-linear Logic (Benton-Bierman-de Paiva-Hyland 1993, Barber 1996) x 1 : a 1 , . . ., x ℓ : a ℓ | y 1 : b 1 , . . ., y n : b n ⊢ t : c � ����������������� �� ����������������� � � ������������������� �� ������������������� � Linear Non-Linear Γ , x : a | ∆ ⊢ t : b Linear rules: x : a | ∆ ⊢ x : a Γ | ∆ ⊢ λ x a . t : a ⊸ b Γ ′ | ∆ ⊢ t : a Γ | ∆ ⊢ s : a ⊸ b Γ , Γ ′ | ∆ ⊢ � s � t : b Γ | ∆ , x : a ⊢ t : b Non-linear rules: Γ | ∆ , x : b ⊢ x : b Γ | ∆ ⊢ λ x a . t : a → b Γ | ∆ ⊢ s : a → b · | ∆ ⊢ t : a Γ | ∆ ⊢ ( s ) t : b Γ , x : a | ∆ ⊢ t : b Linear-non-linear rule: Γ | ∆ , x : a ⊢ t : b 4

  12. A term calculus for Linear-non-linear Logic (Benton-Bierman-de Paiva-Hyland 1993, Barber 1996) 4

  13. A term calculus for Linear-non-linear Logic (Benton-Bierman-de Paiva-Hyland 1993, Barber 1996) x 1 : a 1 , . . ., x ℓ : a ℓ | y 1 : b 1 , . . ., y n : b n ⊢ t : c � ����������������� �� ����������������� � � ������������������� �� ������������������� � Linear Non-Linear Γ , x : a | ∆ ⊢ t : b Linear rules: x : a | ∆ ⊢ x : a Γ | ∆ ⊢ λ x a . t : a ⊸ b Γ ′ | ∆ ⊢ t : a Γ | ∆ ⊢ s : a ⊸ b Γ , Γ ′ | ∆ ⊢ � s � t : b Γ | ∆ , x : a ⊢ t : b Non-linear rules: Γ | ∆ , x : b ⊢ x : b Γ | ∆ ⊢ λ x a . t : a → b Γ | ∆ ⊢ s : a → b · | ∆ ⊢ t : a Γ | ∆ ⊢ ( s ) t : b Γ , x : a | ∆ ⊢ t : b Linear-non-linear rule: Γ | ∆ , x : a ⊢ t : b 4

  14. A term calculus for Linear-non-linear Logic (Benton-Bierman-de Paiva-Hyland 1993, Barber 1996) x 1 : a 1 , . . ., x ℓ : a ℓ | y 1 : b 1 , . . ., y n : b n ⊢ t : c � ����������������� �� ����������������� � � ������������������� �� ������������������� � Linear Non-Linear Γ , x : a ⊢ t : b MLL x : a ⊢ x : a ⊢ λ x a . t : a ⊸ b Γ Γ ′ Γ ⊢ s : a ⊸ b ⊢ t : a Γ , Γ ′ ⊢ � s � t : b ∆ , x : a ⊢ t : b λ -calculus ∆ , x : b ⊢ x : b ∆ ⊢ λ x a . t : a → b ∆ ⊢ s : a → b ∆ ⊢ t : a ∆ ⊢ ( s ) t : b 4

  15. What is a model of substitution ? combining linearity and non-linearity

  16. Axiomatic using Categories In a category X , equipped with the right structure (SMCC/ CCC) Types are interpreted as objects Contexts are interpreted as objects (products/tensors) Terms are interpreted as morphisms Substitution is interpreted as composition In Multiplicative Linear Logic, a proof is interpreted as a morphism x 1 : a 1 , . . ., x ℓ : a ℓ ⊢ t : c as a 1 ⊗ · · · ⊗ a ℓ ⊸ c . 5

  17. Axiomatic using Categories In a category X , equipped with the right structure (SMCC/ CCC) Types are interpreted as objects Contexts are interpreted as objects (products/tensors) Terms are interpreted as morphisms Substitution is interpreted as composition In Multiplicative Linear Logic, a proof is interpreted as a morphism x 1 : a 1 , . . ., x ℓ : a ℓ ⊢ t : c as a 1 ⊗ · · · ⊗ a ℓ ⊸ c . 5

  18. Axiomatic using Categories In a category X , equipped with the right structure (SMCC/ CCC) Types are interpreted as objects Contexts are interpreted as objects (products/tensors) Terms are interpreted as morphisms Substitution is interpreted as composition In λ -calculus, a term is interpreted as a morphism x 1 : b 1 , . . ., x n : b n ⊢ t : c as b 1 × · · · × b n → c . 5

  19. Axiomatic using Categories In a category X , equipped with the right structure (SMCC/ CCC) Types are interpreted as objects Contexts are interpreted as objects (products/tensors) Terms are interpreted as morphisms Substitution is interpreted as composition In λ -calculus, a term is interpreted as a morphism x 1 : b 1 , . . ., x n : b n ⊢ t : c as b 1 × · · · × b n → c . 5

  20. Axiomatic using Categories In a category X , equipped with the right structure (SMCC/ CCC) Types are interpreted as objects Contexts are interpreted as objects (products/tensors) Terms are interpreted as morphisms Substitution is interpreted as composition In λ -calculus, a term is interpreted as a morphism x 1 : b 1 , . . ., x n : b n ⊢ t : c as b 1 × · · · × b n → c . ! b 1 ⊗···⊗ ! b n ⊸ c 5

  21. Axiomatic using Categories In a category X , equipped with the right structure (SMCC/ CCC) Types are interpreted as objects Contexts are interpreted as objects (products/tensors) Terms are interpreted as morphisms Substitution is interpreted as composition In λ -calculus, a term is interpreted as a morphism x 1 : b 1 , . . ., x n : b n ⊢ t : c as b 1 × · · · × b n → c . ! b 1 ⊗···⊗ ! b n ⊸ c In lnl λ -calculus, x 1 : a 1 , . . ., x ℓ : a ℓ | y 1 : b 1 , . . ., y n : b n ⊢ t : c as a 1 ⊗ · · · ⊗ a ℓ ⊗ ! b 1 ⊗ · · · ⊗ ! b n ⊸ c . 5

  22. Axiomatic using generalized multicategories A multicategory is a set of operations: Together with identity and multicomposition: ⇒ 6

  23. Axiomatic using generalized Multicategories In a multicategory Types are interpreted as objects Terms are interpreted as multi morphisms Substitution is interpreted as multi composition. 7

  24. Axiomatic using generalized Multicategories In a multicategory Types are interpreted as objects Terms are interpreted as multi morphisms Substitution is interpreted as multi composition. In Multiplicative Linear Logic, a term is interpreted as a multimorphism in a symmetric multicategory: x 1 : a 1 , . . ., x ℓ : a ℓ ⊢ t : c denoted as a 1 , . . ., a ℓ ⊸ c . 7

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend