introduction
play

Introduction Plethystic substitution Substitution operation in the - PowerPoint PPT Presentation

A simplicial groupoid for plethysm Alex Cebrian Universitat Aut` onoma de Barcelona July 11, 2018 arXiv:1804.09462 Introduction Plethystic substitution Substitution operation in the ring of power series in infinitely many variables,


  1. A simplicial groupoid for plethysm ∗ Alex Cebrian Universitat Aut` onoma de Barcelona July 11, 2018 ∗ arXiv:1804.09462

  2. Introduction Plethystic substitution Substitution operation in the ring of power series in infinitely many variables, G ( x 1 , x 2 , . . . ) ⊛ F ( x 1 , x 2 , . . . ) = G ( F 1 , F 2 , . . . ) , where F k ( x 1 , x 2 , . . . ) = F ( x k , x 2 k , . . . ) . ◮ P´ olya (1937): unlabelled enumeration. Given a species F : B − → Set , its cycle index series is a power series Z F ( x 1 , x 2 , . . . ). It satisfies Z F ◦ G = Z F ⊛ Z G ◮ Littlewood (1944): representation theory of GL. The character of the composition of polynomial representations is the plethysm of their characters.

  3. Introduction ◮ Nava–Rota (1985): combinatorial interpretation of plethystic substitution based on partitions. Goal Recover ⊛ from the coproduct of Q π 0 T 1 S for an explicit simplicial groupoid T S : ∆ op − → Grpd . homotopy T S : ∆ op − → Grpd incidence � Grpd / T 1 S cardinality � Q π 0 T 1 S bialgebra

  4. Contents Introduction Fa` a di Bruno Segal groupoids Incidence bialgebras Homotopy cardinality Plethystic substitution The simplicial groupoid T S

  5. Fa` a di Bruno One-variable power series Bell polynomials B n , k x n � F ( x ) = n ! ∈ Q [[ x ]] f n n n =1 � ∆( A n ) = B n , k ( A 1 , A 2 , . . . ) ⊗ A k x n k =1 � G ( x ) = n ! ∈ Q [[ x ]] g n n =1 B n , k counts the number of surjections Fa` a di Bruno bialgebra F Free algebra Q [ A 1 , A 2 , . . . ], n ։ k ։ 1 A n : Q [[ x ]] − → Q ∼ up to k − → k . F �− → f n , Example with coproduct B 6 , 2 = 6 A 1 A 5 +15 A 2 A 4 +10 A 3 A 3 ∆( A n )( F ⊗ G ) = A n ( G ◦ F )

  6. � ✤ Fa` a di Bruno Theorem (Joyal,1981) F is isomorphic to the homotopy cardinality of the incidence bialgebra of the fat nerve of the category of finite sets and surjections N S : ∆ op − → Grpd . This isomorphisms takes A n to n ։ 1, and A n 1 · · · A n ℓ to ( n = n 1 + · · · + n ℓ ։ ℓ ). The coproduct is given by � ∆( n ։ ℓ ) = ( n ։ k ) ⊗ ( k ։ ℓ ) . n ։ k ։ ℓ Remark ✤ ( d 2 , d 0 ) � ( n ։ k , k ։ ℓ ) d 1 ( n ։ ℓ ) ( n ։ k ։ ℓ )

  7. � � Segal groupoids A simplicial groupoid X : ∆ op − → Grpd is Segal if for all n > 0 d 0 X n +1 X n d n +1 � d n � X n − 1 . X n d 0 Example The fat nerve of a category. Remark There is an up to equivalence “composition” given by ∼ d 1 X 1 × X 0 X 1 ← − − − X 2 − − − → X 1 , which is actual composition when X is the fat nerve of a category.

  8. � � � � � � Incidence bialgebras ( d 2 , d 0 ) � X 1 × X 1 d 1 X 1 X 2 A A ∆: Grpd / X 1 − → Grpd / X 1 × X 1 A s ( d 2 , d 0 ) ! ◦ d ∗ − → X 1 �− → 1 ( s ) In a similar way we obtain a functor ǫ : Grpd / X 1 − → Grpd . aaaaaaa Theorem (G´ alvez, Kock, Tonks) If X is a Segal space the functors ∆ and ǫ are respectively coassociative and counital, up to homotopy.

  9. � � � Incidence bialgebras Definition The slice groupoid Grpd / X 1 together with ∆ and ǫ is the incidence coalgebra of X . CULF monoidal structure Product X n × X n → X n compatible with face and degeneracy maps and such that g × g X n × X n X 1 × X 1 � X 1 , X n g with g induced by the endpoint preserving map [1] → [ n ]. Most of times in combinatorics the monoidal structure is disjoint union. Incidence bialgebra If X is CULF monoidal the incidence coalgebra becomes a bialgebra.

  10. Homotopy cardinality Homotopy cardinality of a groupoid 1 � | · | : Grpd − → Q , | A | := | Aut( a ) | ∈ Q a ∈ π 0 A p Homotopy cardinality of a finite map of groupoids A − → B | A b | � | · | : Grpd / B − → Q π 0 B , | p | := | Aut( b ) | δ b ∈ Q π 0 B , b ∈ π 0 B where A b is homotopy fibre. Remark | 1 b | | 1 � b � − − → B | = | Aut( b ) | δ b = δ b

  11. � � Homotopy cardinality The homotopy cardinality of the incidence bialgebra of X gives a bialgebra structure on Q π 0 X 1 . ǫ : Grpd / X 1 − → Grpd ∆: Grpd / X 1 − → Grpd / X 1 × X 1 ǫ : Q π 0 X 1 − → Q ∆: Q π 0 X 1 − → Q π 0 X 1 ⊗ Q π 0 X 1

  12. Plethystic substitution Notation ◮ λ = ( λ 1 , λ 2 , . . . ), nonzero infinite vector of natural numbers with finite number of nonzero entries, ◮ aut( λ ) = 1! λ 1 λ 1 ! · 2! λ 2 λ 2 ! · · · , ◮ x λ = x λ 1 1 x λ 2 2 · · · . n th Verschiebung operator Shifts the k th entry λ k of λ to the nk th position. For example V 2 (5 , 9 , 2 , 0 . . . ) = (0 , 5 , 0 , 9 , 0 , 2 , 0 . . . ) .

  13. � � Plethystic substitution ii) aut( λ ) = | Aut( a ։ b ) | Remark ∼ � a a i) λ represents the isomorphism class of a surjection of finite sets ∼ � b b a ։ b iii) V n λ is the class of n × a ։ b with λ k fibers of size k . Example V 2 (1 , 0 , 2) = (0 , 1 , 0 , 0 , 0 , 2) Example corresponds to (1 , 0 , 2) corresponds to : : : : : : : . . . . . . . . . . . . .

  14. Plethystic substitution Infinitely many variables power series x µ x λ � � F ( x ) = f µ aut( µ ) ∈ Q [[ x ]] , G ( x ) = g λ aut( λ ) ∈ Q [[ x ]] µ λ Plethystic substitution ( G ⊛ F )( x ) = G ( F 1 , F 2 , . . . ) , with x V k µ � F k ( x 1 , x 2 , . . . ) = F ( x k , x 2 k , . . . ) = f µ aut( µ ) . µ

  15. Plethystic substitution Plethystic bialgebra P Polynomials P σ,λ ( { A µ } ) Free algebra Q [ { A λ } λ ], A σ : Q [[ x ]] − → Q � ∆( A σ ) = P σ,λ ( { A µ } ) ⊗ A λ F �− → f σ , λ with coproduct What does P σ,λ count? ∆( A σ )( F ⊗ G ) = A σ ( G ⊛ F ) Example 6! 2 2!4! 6! 2 2!4! 4!3! 2 2! 2 2! A (0 , 0 , 0 , 1) A 2 P (0 , 0 , 0 , 1 , 0 , 2) , (1 , 2) = (0 , 0 , 1) + 6!3!2!2! 2 2! 2 A (0 , 0 , 0 , 0 , 0 , 1) A (0 , 0 , 1) A (0 , 1) (0 , 0 , 0 , 1 , 0 , 2) = V 1 (0 , 0 , 0 , 0 , 0 , 1) + V 2 (0 , 0 , 1) + V 2 (0 , 1) (0 , 0 , 0 , 1 , 0 , 2) = V 1 (0 , 0 , 0 , 1) + V 2 (0 , 0 , 1) + V 2 (0 , 0 , 1)

  16. �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� The simplicial groupoid T S : ∆ op − → Grpd t 02 t 01 t 01 t 12 � � t 11 , t 00 � � t 11 � � t 22 t 00 t 03 t 02 t 13 t 01 t 12 t 23 � � t 11 � � t 22 � � t 33 t 00 ◮ t ij are finite sets, ◮ ։ are surjections, ◮ every square is a pullback of finite sets.

  17. �� �� �� �� �� �� �� �� �� �� �� �� �� The simplicial groupoid T S : ∆ op − → Grpd Face maps d i removes all the elements containing an i index: t 02   t 01     t 01 t 12 = d 0   � � t 11   t 00   � � t 11 � � t 22 , t 00 Degeneracy maps s i repeats all the elements containing an i index: t 01   t 01  = s 1 t 01 t 11  � � t 11 t 00 � � t 11 t 00 t 11

  18. �� �� �� �� �� �� �� �� �� �� �� �� �� The simplicial groupoid T S : ∆ op − → Grpd Face maps d i removes all the elements containing an i index: t 02   t 12     t 01 t 12 = d 2   � � t 22   t 11   � � t 11 � � t 22 , t 00 Degeneracy maps s i repeats all the elements containing an i index: t 01   t 01  = s 1 t 01 t 11  � � t 11 t 00 � � t 11 t 00 t 11

  19. �� �� �� �� �� �� �� �� �� �� �� �� �� The simplicial groupoid T S : ∆ op − → Grpd Face maps d i removes all the elements containing an i index: t 02   t 02     t 01 t 12 = d 1   � � t 22   t 00   � � t 11 � � t 22 , t 00 Degeneracy maps s i repeats all the elements containing an i index: t 01   t 01  = s 1 t 01 t 11  � � t 11 t 00 � � t 11 t 00 t 11

  20. �� �� �� �� �� �� �� �� �� �� �� �� �� The simplicial groupoid T S : ∆ op − → Grpd Face maps d i removes all the elements containing an i index: t 02   t 02     t 01 t 12 = d 1   � � t 22   t 00   � � t 11 � � t 22 , t 00 Degeneracy maps s i repeats all the elements containing an i index: t 01   t 01  = s 0 t 00 t 01  � � t 11 t 00 � � t 11 t 00 t 00

  21. � � � � �� �� �� �� �� � �� �� �� �� �� � The simplicial groupoid T S : ∆ op − → Grpd Proposition. T S is a Segal groupoid. ∼ Equivalence T 1 S × T 0 S T 1 S − − − → T 2 S : t 01 × t 11 t 12 t 01 t 12 � � �− → t 01 t 12 � � t 11 � � t 22 t 00 � � � � t 11 � � t 22 t 00 Proposition. T S is CULF monoidal with disjoint union (+) . t ′ t 01 + t ′ t 01 01 01 + = � � � � t 11 � � t ′ � � t 11 + t ′ t 00 t ′ t 00 + t ′ 00 11 00 11

  22. �� �� The simplicial groupoid T S : ∆ op − → Grpd Corollary Q π 0 T S has a bialgebra structure given the homotopy cardinality of the incidence bialgebra of T S . Remark The isomorphism classes of connected elements t 01 � � 1 t 00 of T 1 S form a basis of Q π 0 T 1 S .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend