the inverse eigenvalue problem of a graph multiplicities
play

The inverse eigenvalue problem of a graph: Multiplicities and minors - PowerPoint PPT Presentation

The inverse eigenvalue problem of a graph: Multiplicities and minors Jephian C.-H. Lin Department of Mathematics and Statistics, University of Victoria Jan 13, 2018 Joint Mathematics Meetings, San Diego, CA IEPG: Multiplicities and minors


  1. The inverse eigenvalue problem of a graph: Multiplicities and minors Jephian C.-H. Lin Department of Mathematics and Statistics, University of Victoria Jan 13, 2018 Joint Mathematics Meetings, San Diego, CA IEPG: Multiplicities and minors 1/14 Math & Stats, University of Victoria

  2. Joint work with Wayne Barrett, Steve Butler, Shaun M. Fallat, H. Tracy Hall, Leslie Hogben, Bryan L. Shader and Michael Young. IEPG: Multiplicities and minors 2/14 Math & Stats, University of Victoria

  3. Inverse eigenvalue problem of a graph Let G be a simple graph on n vertices. The family S ( G ) consists � � of all n × n real symmetric matrix M = M i , j with  M i , j = 0 if i � = j and { i , j } is not an edge ,   M i , j � = 0 if i � = j and { i , j } is an edge ,   M i , j ∈ R if i = j .       0 1 0 1 − 1 0 2 0 . 1 0  ,  ,  , · · · S ( ) ∋ 1 0 1 − 1 2 − 1 0 . 1 1 π    0 1 0 0 − 1 1 0 0 π The inverse eigenvalue problem of a graph (IEPG) asks what are all spectra appeared in S ( G ) for a given graph G . IEPG: Multiplicities and minors 3/14 Math & Stats, University of Victoria

  4. Theorem (Monfared and Shader 2013) Let G be a graph on n vertices. For any n distinct real numbers { λ 1 , . . . , λ n } , there is a matrix A ∈ S ( G ) with spec( A ) = { λ 1 , . . . , λ n } . Key idea: Use Implicit Function Theorem to perturb the diagonal matrix.     λ 1 0 0 0 0 ∼ λ 1 ǫ 0 ǫ 0 0 0 0 0 ∼ λ 2 0 λ 2 ǫ ǫ ǫ         0 0 0 0 0 ∼ λ 3 0  λ 3   ǫ ǫ  − →     ... ...     0 0 0 0 ǫ 0 ǫ ǫ     0 0 0 0 0 0 ∼ λ n λ n ǫ ǫ IEPG: Multiplicities and minors 4/14 Math & Stats, University of Victoria

  5. Theorem (Monfared and Shader 2013) Let G be a graph on n vertices. For any n distinct real numbers { λ 1 , . . . , λ n } , there is a matrix A ∈ S ( G ) with spec( A ) = { λ 1 , . . . , λ n } . Key idea: Use Implicit Function Theorem to perturb the diagonal matrix.     λ 1 0 0 0 0 ∼ λ 1 ǫ 0 ǫ 0 0 0 0 0 ∼ λ 2 0 λ 2 ǫ ǫ ǫ         0 0 0 0 0 ∼ λ 3 0  λ 3   ǫ ǫ  − →     ... ...     0 0 0 0 ǫ 0 ǫ ǫ     0 0 0 0 0 0 ∼ λ n λ n ǫ ǫ IEPG: Multiplicities and minors 4/14 Math & Stats, University of Victoria

  6. Example on P 3   0 x 1 y A ( x 1 , x 2 , x 3 , y ) = y x 2 y   0 y x 3 Goal: Given λ i ’s, find x i ’s and y � = 0 such that spec( A ( x 1 , x 2 , x 3 , y )) = { λ i } 3 i =1 . Note: spec( A ( λ 1 , λ 2 , λ 3 , 0)) = { λ i } 3 i =1 , but y = 0. IEPG: Multiplicities and minors 5/14 Math & Stats, University of Victoria

  7. Example on P 3   x 1 y 0 A ( x 1 , x 2 , x 3 , y ) = y x 2 y   0 y x 3 Consider the function f ( x 1 , x 2 , x 3 , y ) �→ (tr( A ) , 1 2 tr( A 2 ) , 1 3 tr( A 3 )) . The right hand side controls the spectrum. When x i = λ i and y = 0, it has the desired spectrum. IEPG: Multiplicities and minors 5/14 Math & Stats, University of Victoria

  8. Example on P 3   x 1 y 0 A ( x 1 , x 2 , x 3 , y ) = y x 2 y   0 y x 3 independent ) �→ (tr( A ) , 1 2 tr( A 2 ) , 1 � �� � 3 tr( A 3 ) ( ) . x 1 , x 2 , x 3 , y ���� � �� � independent dependent IEPG: Multiplicities and minors 5/14 Math & Stats, University of Victoria

  9. Example on P 3   0 x 1 y A ( x 1 , x 2 , x 3 , y ) = y x 2 y   0 y x 3 dependent ) �→ (tr( A ) , 1 2 tr( A 2 ) , 1 � �� � 3 tr( A 3 ) ( x 1 , x 2 , x 3 , y ) . ���� � �� � independent fixed IEPG: Multiplicities and minors 5/14 Math & Stats, University of Victoria

  10. Example on P 3   0 x 1 y A ( x 1 , x 2 , x 3 , y ) = y x 2 y   0 y x 3 dependent ) �→ (tr( A ) , 1 2 tr( A 2 ) , 1 � �� � 3 tr( A 3 ) ( x 1 , x 2 , x 3 , y ) . ���� � �� � independent fixed tr( A ) = x 1 + x 2 + x 3   1 1 1 � tr( A 2 ) = x 2 1 + x 2 2 + x 2 3 + y (???) = ⇒ Jac = λ 1 λ 2 λ 3 � x i = λ i   y =0 λ 2 λ 2 λ 2 tr( A 3 ) = x 3 1 + x 3 2 + x 3 3 + y (???) 1 2 3 IEPG: Multiplicities and minors 5/14 Math & Stats, University of Victoria

  11. Example on P 3   x 1 y 0 A ( x 1 , x 2 , x 3 , y ) = y x 2 y   0 y x 3 dependent ) �→ (tr( A ) , 1 2 tr( A 2 ) , 1 � �� � 3 tr( A 3 ) ( x 1 , x 2 , x 3 , y ) . ���� � �� � independent fixed When λ i ’s are all distinct, the Jacobian matrix is invertible. We may perturb y to ǫ � = 0 and x i ∼ λ i , while preserving the same spectrum. (This proof follows from [Monfared and Khanmohammadi 2018].) IEPG: Multiplicities and minors 5/14 Math & Stats, University of Victoria

  12. Another point of view of the theorem Theorem (Monfared and Shader 2013) Let K n be a spanning subgraph of G. If A ∈ S ( K n ) has some nice property, then there is B ∈ S ( G ) with spec( B ) = spec( A ) . Theorem (BFHHLS 2017) Let H be a spanning subgraph of G. If A ∈ S ( H ) has the Strong Spectral Property, then there is B ∈ S ( G ) with spec( B ) = spec( A ) . IEPG: Multiplicities and minors 6/14 Math & Stats, University of Victoria

  13. Another point of view of the theorem Theorem (Monfared and Shader 2013) Let K n be a spanning subgraph of G. If A ∈ S ( K n ) has some nice property, then there is B ∈ S ( G ) with spec( B ) = spec( A ) . Theorem (BFHHLS 2017) Let H be a spanning subgraph of G. If A ∈ S ( H ) has the Strong Spectral Property, then there is B ∈ S ( G ) with spec( B ) = spec( A ) . IEPG: Multiplicities and minors 6/14 Math & Stats, University of Victoria

  14. Isospectral manifolds and pattern manifolds Let A ∈ S ( H ). The isospectral manifold is E A = { Q ⊤ AQ : Q orthogonal } . The pattern manifold is S cl ( H ) = { M : M i , j = 0 if { i , j } ∈ E ( H ) } . Also define S cl y ( H , G ) = { M ∈ S cl ( G ) : M i , j = y if { i , j } ∈ E ( G ) \ E ( H ) } such that S cl ( H ) = S cl 0 ( H , G ) � S cl y ( H , G ) ⊂ S cl ( G ) . IEPG: Multiplicities and minors 7/14 Math & Stats, University of Victoria

  15. Transversality and Strong Arnold Property Two manifolds intersect transversally at a point A if their normal spaces only have trivial intersection. � M 1 ∩ M 2 ⇐ ⇒ Nor M 1 . A ∩ Nor M 2 . A = { 0 } Let A ∈ S ( H ). Then A has the Strong Spectral Property if � ∩ S cl ( H ) . E A transversal not transversal IEPG: Multiplicities and minors 8/14 Math & Stats, University of Victoria

  16. Theorem (BFHHLS 2017) Let H be a spanning subgraph of G. If A ∈ S ( H ) has the Strong Spectral Property, then there is B ∈ S ( G ) with spec( B ) = spec( A ) . E A S cl ( H ) = S cl 0 ( H , G ) � ∩ S cl ( H ) A ∈ E A IEPG: Multiplicities and minors 9/14 Math & Stats, University of Victoria

  17. Theorem (BFHHLS 2017) Let H be a spanning subgraph of G. If A ∈ S ( H ) has the Strong Spectral Property, then there is B ∈ S ( G ) with spec( B ) = spec( A ) . � ∩ S cl ( G ) B ∈ E A E A S cl ( G ) ⊃ S cl y ( H , G ) S cl ( H ) = S cl 0 ( H , G ) � ∩ S cl ( H ) A ∈ E A IEPG: Multiplicities and minors 9/14 Math & Stats, University of Victoria

  18. Tangent spaces Let A ∈ S ( H ). Then the tangent spaces are Tan E A . A = { K ⊤ A + AK : K skew-symmetric } Tan S cl ( H ) . A = S cl ( H ) . Let Q ( t ) be an orthogonal matrix with Q (0) = I . Then d � dt [ Q ( t ) ⊤ AQ ( t )] t =0 = ˙ Q (0) ⊤ AA ˙ Q (0) . � IEPG: Multiplicities and minors 10/14 Math & Stats, University of Victoria

  19. Tangent spaces Let A ∈ S ( H ). Then the tangent spaces are Tan E A . A = { K ⊤ A + AK : K skew-symmetric } Tan S cl ( H ) . A = S cl ( H ) . Let Q ( t ) be an orthogonal matrix with Q (0) = I . Then d � dt [ Q ( t ) ⊤ AQ ( t )] t =0 = ˙ Q (0) ⊤ AQ (0) + Q (0) ⊤ A ˙ Q (0) . � IEPG: Multiplicities and minors 10/14 Math & Stats, University of Victoria

  20. Tangent spaces Let A ∈ S ( H ). Then the tangent spaces are Tan E A . A = { K ⊤ A + AK : K skew-symmetric } Tan S cl ( H ) . A = S cl ( H ) . Let Q ( t ) be an orthogonal matrix with Q (0) = I . Then d � dt [ Q ( t ) ⊤ AQ ( t )] t =0 = ˙ Q (0) ⊤ AQ (0) + Q (0) ⊤ A ˙ Q (0) . � IEPG: Multiplicities and minors 10/14 Math & Stats, University of Victoria

  21. Tangent spaces Let A ∈ S ( H ). Then the tangent spaces are Tan E A . A = { K ⊤ A + AK : K skew-symmetric } Tan S cl ( H ) . A = S cl ( H ) . Let Q ( t ) be an orthogonal matrix with Q (0) = I . Then d � dt [ Q ( t ) ⊤ AQ ( t )] t =0 = ˙ Q (0) ⊤ A + A ˙ Q (0) . � IEPG: Multiplicities and minors 10/14 Math & Stats, University of Victoria

  22. Tangent spaces Let A ∈ S ( H ). Then the tangent spaces are Tan E A . A = { K ⊤ A + AK : K skew-symmetric } Tan S cl ( H ) . A = S cl ( H ) . Let Q ( t ) be an orthogonal matrix with Q (0) = I . Then d � dt [ Q ( t ) ⊤ AQ ( t )] t =0 = ˙ Q (0) ⊤ A + A ˙ Q (0) . � Q (0) ⊤ Q (0) + Q (0) ⊤ ˙ ˙ Q ( t ) ⊤ Q ( t ) = I = ⇒ Q (0) = 0 , so ˙ Q (0) is skew-symmetric. IEPG: Multiplicities and minors 10/14 Math & Stats, University of Victoria

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend