the indep enden e numb ers and the hromati numb ers of
play

The indep endene numb ers and the hromati numb ers of - PowerPoint PPT Presentation

The indep endene numb ers and the hromati numb ers of random subgraphs Andrei Raigo ro dskii Moso w Institute of Physis and T ehnology Moso w, Russia A. Raigo ro dskii (MIPT) 2019 T ehran, Iran 1 / 10


  1. The indep enden e numb ers and the hromati numb ers of random subgraphs Andrei Raigo ro dskii Mos o w Institute of Physi s and T e hnology Mos o w, Russia A. Raigo ro dskii (MIPT) 2019 T ehran, Iran 1 / 10

  2. Main question A. Raigo ro dskii (MIPT) 2019 T ehran, Iran 2 / 10

  3. Main question Erd� os�R � enyi random graph Let n ∈ N , p ∈ [0 , 1] . G ( n, p ) on n is obtained b y dra wing indep endently edges y p . verti es, ea h with p robabilit A. Raigo ro dskii (MIPT) 2019 T ehran, Iran 2 / 10

  4. Main question Erd� os�R � enyi random graph Let n ∈ N , p ∈ [0 , 1] . G ( n, p ) on n is obtained b y dra wing indep endently edges y p . verti es, ea h with p robabilit Theo rem Let p b e a onstant o r a fun tion tending to zero and b ounded from b elo w b y a value c 1 where c > 1 . Let d = n 1 − p , . Then w.h.p. n α ( G ( n, p )) ∼ 2 log d ( np ) , χ ( G ( n, p )) ∼ 2 log d ( np ) . A. Raigo ro dskii (MIPT) 2019 T ehran, Iran 2 / 10

  5. Main question Erd� os�R � enyi random graph Let n ∈ N , p ∈ [0 , 1] . G ( n, p ) on n is obtained b y dra wing indep endently edges y p . verti es, ea h with p robabilit Theo rem Let p b e a onstant o r a fun tion tending to zero and b ounded from b elo w b y a value c 1 where c > 1 . Let d = n 1 − p , . Then w.h.p. n α ( G ( n, p )) ∼ 2 log d ( np ) , χ ( G ( n, p )) ∼ 2 log d ( np ) . A general random subgraph Let n ∈ N , p ∈ [0 , 1] , G n = ( V n , E n ) graphs. G n,p � an a rbitra ry sequen e of is from G n of G n y p . obtained b y k eeping indep endently edges , ea h with p robabilit A. Raigo ro dskii (MIPT) 2019 T ehran, Iran 2 / 10

  6. Main question Erd� os�R � enyi random graph Let n ∈ N , p ∈ [0 , 1] . G ( n, p ) on n is obtained b y dra wing indep endently edges y p . verti es, ea h with p robabilit Theo rem Let p b e a onstant o r a fun tion tending to zero and b ounded from b elo w b y a value c 1 where c > 1 . Let d = n 1 − p , . Then w.h.p. n α ( G ( n, p )) ∼ 2 log d ( np ) , χ ( G ( n, p )) ∼ 2 log d ( np ) . A general random subgraph Let n ∈ N , p ∈ [0 , 1] , G n = ( V n , E n ) graphs. G n,p � an a rbitra ry sequen e of is from G n of G n y p . obtained b y k eeping indep endently edges , ea h with p robabilit out α ( G n,p ) and χ ( G n,p ) What an b e said ab ? A. Raigo ro dskii (MIPT) 2019 T ehran, Iran 2 / 10

  7. A sp e ial ase Main de�nition Let r, s, n ∈ N , s < r < n , let G ( n, r, s ) = ( V, E ) and , where V = { x = ( x 1 , . . . , x n ) : x i ∈ { 0 , 1 } , x 1 + . . . + x n = r } , E = {{ x , y } : ( x , y ) = s } . A. Raigo ro dskii (MIPT) 2019 T ehran, Iran 3 / 10

  8. A sp e ial ase Main de�nition Let r, s, n ∈ N , s < r < n , let G ( n, r, s ) = ( V, E ) and , where V = { x = ( x 1 , . . . , x n ) : x i ∈ { 0 , 1 } , x 1 + . . . + x n = r } , E = {{ x , y } : ( x , y ) = s } . Equivalent de�nition Let r, s, n ∈ N , s < r < n . Let [ n ] an n -element b e set, and let G ( n, r, s ) = ( V, E ) , where � [ n ] � V = , E = { A, B ∈ V : | A ∩ B | = s } . r A. Raigo ro dskii (MIPT) 2019 T ehran, Iran 3 / 10

  9. A sp e ial ase Main de�nition Let r, s, n ∈ N , s < r < n , let G ( n, r, s ) = ( V, E ) and , where V = { x = ( x 1 , . . . , x n ) : x i ∈ { 0 , 1 } , x 1 + . . . + x n = r } , E = {{ x , y } : ( x , y ) = s } . Equivalent de�nition Let r, s, n ∈ N , s < r < n . Let [ n ] an n -element b e set, and let G ( n, r, s ) = ( V, E ) , where � [ n ] � V = , E = { A, B ∈ V : | A ∩ B | = s } . r out α ( G p ( n, r, s )) and χ ( G p ( n, r, s )) Again, what an b e said ab ? A. Raigo ro dskii (MIPT) 2019 T ehran, Iran 3 / 10

  10. Some motivation studying G ( n, r, s ) Why ? A. Raigo ro dskii (MIPT) 2019 T ehran, Iran 4 / 10

  11. Some motivation studying G ( n, r, s ) Why ? Co ding theo ry (�Johnson's graphs�): A. Raigo ro dskii (MIPT) 2019 T ehran, Iran 4 / 10

  12. Some motivation studying G ( n, r, s ) Why ? er α ( G ( n, r, s )) Co ding theo ry (�Johnson's graphs�): the indep enden e numb stands fo r the maximum size of a o de with one fo rbidden distan e; A. Raigo ro dskii (MIPT) 2019 T ehran, Iran 4 / 10

  13. Some motivation studying G ( n, r, s ) Why ? er α ( G ( n, r, s )) Co ding theo ry (�Johnson's graphs�): the indep enden e numb stands fo r the maximum size of a o de with one fo rbidden distan e; the er ω ( G (4 k, 2 k, k )) lique numb is resp onsible fo r the existen e of an Hadama rd matrix; et . A. Raigo ro dskii (MIPT) 2019 T ehran, Iran 4 / 10

  14. Some motivation studying G ( n, r, s ) Why ? er α ( G ( n, r, s )) Co ding theo ry (�Johnson's graphs�): the indep enden e numb stands fo r the maximum size of a o de with one fo rbidden distan e; the er ω ( G (4 k, 2 k, k )) lique numb is resp onsible fo r the existen e of an Hadama rd matrix; et . geometry : G ( n, r, s ) Combinato rial is a � distan e � graph, i.e., its edges a re � 2( r − s ) er χ ( G ( n, r, s )) of the same length . The hromati numb p rovides imp o rtant b ounds in the Nelson�Hadwiger p roblems of spa e olo ring as w ell as in the Bo rsuk p roblem of pa rtitioning sets in spa es into pa rts of smaller diameter. A. Raigo ro dskii (MIPT) 2019 T ehran, Iran 4 / 10

  15. Some motivation studying G ( n, r, s ) Why ? er α ( G ( n, r, s )) Co ding theo ry (�Johnson's graphs�): the indep enden e numb stands fo r the maximum size of a o de with one fo rbidden distan e; the er ω ( G (4 k, 2 k, k )) lique numb is resp onsible fo r the existen e of an Hadama rd matrix; et . geometry : G ( n, r, s ) Combinato rial is a � distan e � graph, i.e., its edges a re � 2( r − s ) er χ ( G ( n, r, s )) of the same length . The hromati numb p rovides imp o rtant b ounds in the Nelson�Hadwiger p roblems of spa e olo ring as w ell as in the Bo rsuk p roblem of pa rtitioning sets in spa es into pa rts of smaller diameter. G ( n, r, 0) graph; G ( n, 1 , 0) is the lassi al Kneser is just a omplete graph. A. Raigo ro dskii (MIPT) 2019 T ehran, Iran 4 / 10

  16. Some motivation studying G ( n, r, s ) Why ? er α ( G ( n, r, s )) Co ding theo ry (�Johnson's graphs�): the indep enden e numb stands fo r the maximum size of a o de with one fo rbidden distan e; the er ω ( G (4 k, 2 k, k )) lique numb is resp onsible fo r the existen e of an Hadama rd matrix; et . geometry : G ( n, r, s ) Combinato rial is a � distan e � graph, i.e., its edges a re � 2( r − s ) er χ ( G ( n, r, s )) of the same length . The hromati numb p rovides imp o rtant b ounds in the Nelson�Hadwiger p roblems of spa e olo ring as w ell as in the Bo rsuk p roblem of pa rtitioning sets in spa es into pa rts of smaller diameter. G ( n, r, 0) graph; G ( n, 1 , 0) is the lassi al Kneser is just a omplete graph. Constru tive b ounds fo r Ramsey numb ers. A. Raigo ro dskii (MIPT) 2019 T ehran, Iran 4 / 10

  17. of G ( n, r, s ) : Random subgraphs indep enden e numb ers Theo rem (F rankl, F� uredi, 1985) Let r, s as n → ∞ . b e �xed then α ( G ( n, r, s )) = Θ ( n s ) . If r � 2 s + 1 , A. Raigo ro dskii (MIPT) 2019 T ehran, Iran 5 / 10

  18. of G ( n, r, s ) : Random subgraphs indep enden e numb ers Theo rem (F rankl, F� uredi, 1985) Let r, s as n → ∞ . b e �xed then α ( G ( n, r, s )) = Θ ( n s ) . If r � 2 s + 1 , � n r − s − 1 � If r > 2 s + 1 , then α ( G ( n, r, s )) = Θ . A. Raigo ro dskii (MIPT) 2019 T ehran, Iran 5 / 10

  19. of G ( n, r, s ) : Random subgraphs indep enden e numb ers Theo rem (F rankl, F� uredi, 1985) Let r, s as n → ∞ . b e �xed then α ( G ( n, r, s )) = Θ ( n s ) . If r � 2 s + 1 , � n r − s − 1 � If r > 2 s + 1 , then α ( G ( n, r, s )) = Θ . Theo rem (Bogoliubskiy , Gusev, Py aderkin, A.M., 2013�2016) Let r, s as n → ∞ . b e �xed If r � 2 s + 1 , w.h.p. α ( G 1 / 2 ( n, r, s )) = Θ ( α ( G ( n, r, s )) log n ) then . A. Raigo ro dskii (MIPT) 2019 T ehran, Iran 5 / 10

  20. of G ( n, r, s ) : Random subgraphs indep enden e numb ers Theo rem (F rankl, F� uredi, 1985) Let r, s as n → ∞ . b e �xed then α ( G ( n, r, s )) = Θ ( n s ) . If r � 2 s + 1 , � n r − s − 1 � If r > 2 s + 1 , then α ( G ( n, r, s )) = Θ . Theo rem (Bogoliubskiy , Gusev, Py aderkin, A.M., 2013�2016) Let r, s as n → ∞ . b e �xed If r � 2 s + 1 , w.h.p. α ( G 1 / 2 ( n, r, s )) = Θ ( α ( G ( n, r, s )) log n ) then . If r > 2 s + 1 , w.h.p. α ( G 1 / 2 ( n, r, s )) ∼ α ( G ( n, r, s )) then . A. Raigo ro dskii (MIPT) 2019 T ehran, Iran 5 / 10

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend