the icosahedra of edge length 1
play

The icosahedra of edge length 1 Daniel Robertz (j.w. K.-H. - PowerPoint PPT Presentation

The icosahedra of edge length 1 Daniel Robertz (j.w. K.-H. Brakhage, A. Niemeyer, W. Plesken, A. Strzelczyk) Centre for Mathematical Sciences University of Plymouth Lancaster, 13/06/2019 Simplicial surfaces j. w. K.-H. Brakhage, A. Niemeyer,


  1. The icosahedra of edge length 1 Daniel Robertz (j.w. K.-H. Brakhage, A. Niemeyer, W. Plesken, A. Strzelczyk) Centre for Mathematical Sciences University of Plymouth Lancaster, 13/06/2019

  2. Simplicial surfaces j. w. K.-H. Brakhage, A. Niemeyer, W. Plesken, A. Strzelczyk et al. build surfaces from triangles belonging to very few congruence classes simplicial surfaces as combinatorial objects simplicial surfaces as Euclidean two-dim. (compact) manifolds with singularities embeddings of abstract simplicial surfaces into Euclidean 3 -space K.-H. Brakhage, A. Niemeyer, W. Plesken, A. Strzelczyk, Simplicial surfaces controlled by one triangle , 17th Int. Conference on Geometry and Graphics, 4–8 Aug. 2016, Beijing Lancaster, 13/06/2019

  3. Icosahedra of edge length 1 Classify embeddings of icosahedron in R 3 with 12 distinct vertices admitting non-trivial symmetry Lancaster, 13/06/2019

  4. Icosahedra of edge length 1 Classify embeddings of icosahedron in R 3 with 12 distinct vertices admitting non-trivial symmetry drop convexity, allow self-intersection of faces Lancaster, 13/06/2019

  5. Icosahedra of edge length 1 Classify embeddings of icosahedron in R 3 with 12 distinct vertices admitting non-trivial symmetry drop convexity, allow self-intersection of faces equivalence of icosahedra: rigid transformations Lancaster, 13/06/2019

  6. Icosahedra of edge length 1 Classify embeddings of icosahedron in R 3 with 12 distinct vertices admitting non-trivial symmetry drop convexity, allow self-intersection of faces equivalence of icosahedra: rigid transformations � 35 inequivalent rigid icosahedra, 1 curve of flexible icosahedra K.-H. B., A. C. N., W. P., D. R., A. S., The icosahedra of edge length 1 , J. Algebra, in press web page: http://algebra.data.rwth-aachen.de/Icosahedra/visualplusdata.html Lancaster, 13/06/2019

  7. Software We used: • Magma • Maple: Involutive • C++/Python: GINV • Bertini Lancaster, 13/06/2019

  8. Software We used: • Magma • Maple: Involutive • C++/Python: GINV • Bertini Also under development: • simplicial-surfaces in GAP (M. Baumeister, A. Niemeyer) Lancaster, 13/06/2019

  9. Icosahedron Combinatorial automorphism group A ∼ = C 2 × A 5 generated by a := (1 , 2)(3 , 4)(5 , 7)(6 , 8)(9 , 11)(10 , 12) , b := (1 , 10)(3 , 9)(2 , 12)(4 , 11)(5 , 6)(7 , 8) , c := (1 , 7)(2 , 3)(4 , 11)(5 , 12)(6 , 8)(9 , 10) , d := (1 , 12)(3 , 9)(2 , 10)(4 , 11)(5 , 7)(6 , 8) Lancaster, 13/06/2019

  10. Icosahedron Combinatorial automorphism group A ∼ = C 2 × A 5 generated by a := (1 , 2)(3 , 4)(5 , 7)(6 , 8)(9 , 11)(10 , 12) , b := (1 , 10)(3 , 9)(2 , 12)(4 , 11)(5 , 6)(7 , 8) , c := (1 , 7)(2 , 3)(4 , 11)(5 , 12)(6 , 8)(9 , 10) , d := (1 , 12)(3 , 9)(2 , 10)(4 , 11)(5 , 7)(6 , 8) d generates centre of A , interchanges combinatorially opposite vertices 20 faces: orbit of { 1 , 2 , 3 } , 30 edges: orbit of { 1 , 2 } , 30 diagonals of combinatorial distance 2: orbit of { 3 , 4 } , 6 diagonals of combinatorial distance 3: orbit of { 1 , 12 } Lancaster, 13/06/2019

  11. Icosahedron Combinatorial automorphism group A ∼ = C 2 × A 5 generated by a := (1 , 2)(3 , 4)(5 , 7)(6 , 8)(9 , 11)(10 , 12) , b := (1 , 10)(3 , 9)(2 , 12)(4 , 11)(5 , 6)(7 , 8) , c := (1 , 7)(2 , 3)(4 , 11)(5 , 12)(6 , 8)(9 , 10) , d := (1 , 12)(3 , 9)(2 , 10)(4 , 11)(5 , 7)(6 , 8) d generates centre of A , interchanges combinatorially opposite vertices 20 faces: orbit of { 1 , 2 , 3 } , 30 edges: orbit of { 1 , 2 } , 30 diagonals of combinatorial distance 2: orbit of { 3 , 4 } , 6 diagonals of combinatorial distance 3: orbit of { 1 , 12 } π : A → GL(12 , R ) natural representation of A by permutation matrices Lancaster, 13/06/2019

  12. Theorem The subgroups U of A with more than one element that arise as symmetry group of an icosahedron fall into 11 conjugacy classes: Automorphism group Number of U ≤ A = C 2 × A 5 icosahedra C 2 × A 5 2 C 2 × D 10 4 C 2 × D 6 2 D 10 ( �≤ A 5 ) 3 D 6 ( �≤ A 5 ) 2 2 C 2 ( ∋ d ) 1 2 C 2 ( �∋ d, �≤ A 5 ) 5 2 C 2 ( ≤ A 5 ) 1 C 2 ( ≤ A 5 ) 5 C 2 ( �∋ d, �≤ A 5 ) 10 C 2 (= � d � ) ∞ Lancaster, 13/06/2019

  13. S :=Stab A Syl 2 ( S ) d G r 1 ,G r G r f,G Trace relation λ 4 − 76 3 λ 3 + 238 λ 2 − 4964 C 22 λ + 23767 � a, d � •− 8 4 2 1 + 5 15 λ 2 − 15 λ + 45 C 2 × A 5 � a, b, d � 2 2 2 2 λ 2 − 15 λ + 269 C 2 × D 10 � a, d � −• 2 2 2 2 + 5 λ 2 − 71 C 22 � a, bd � − + 5 λ + 10561 2 2 2 2 + 225 λ 4 − 18 λ 3 + 583 5 λ 2 − 1658 � a, d � − + λ + 9101 C 2 × D 10 4 2 2 2 + 5 25 λ 4 − 26 λ 3 + 243 λ 2 − 970 λ + 1397 � a, d � − + C 2 × D 6 4 4 2 2 + λ 12 − 5179 · 2 2 3 2 · 5 2 λ 11 ± · · · C 22 � a, bd � − + 24 10 6 3 + λ 5 − 117 2 λ 4 ± · · · C 22 � a, b � −− 30 18 6 1 − λ 43 − 73 · 7 · 11 · 461687 2 2 · 3 3 · 5 2 · 29 · 79 λ 42 ± · · · C 2 � a � − 172 48 20 5 λ 2 − 44 3 λ + 2131 D 10 � ad � + 2 2 2 2 45 λ 2 − 68 5 λ + 1111 D 6 � ad � + 2 2 2 2 25 λ 18 − 1106 λ 17 ± · · · C 2 � ad � + 36 12 8 4 9 λ 42 − 2 · 719 · 1223 λ 41 ± · · · C 2 � ad � + 168 40 24 6 3 3 · 5 · 43 λ 2 − 26 3 λ + 149 D 10 � ad � + 4 2 2 1 9 Lancaster, 13/06/2019

  14. Classification Choose origin as centre of mass of the 12 (equilibrated) vertices M ∈ R 3 × 12 coordinate matrix Lancaster, 13/06/2019

  15. Classification Choose origin as centre of mass of the 12 (equilibrated) vertices M ∈ R 3 × 12 coordinate matrix G := M tr M ∈ R 12 × 12 Gram matrix Lancaster, 13/06/2019

  16. Classification Choose origin as centre of mass of the 12 (equilibrated) vertices M ∈ R 3 × 12 coordinate matrix G := M tr M ∈ R 12 × 12 Gram matrix Gram matrices: equivalence = conjugacy by permutation matrices → π ( g ) tr G π ( g ) = ( G ig,jg ) 1 ≤ i,j ≤ 12 ( g, G ) �− Lancaster, 13/06/2019

  17. Classification Choose origin as centre of mass of the 12 (equilibrated) vertices M ∈ R 3 × 12 coordinate matrix G := M tr M ∈ R 12 × 12 Gram matrix Gram matrices: equivalence = conjugacy by permutation matrices → π ( g ) tr G π ( g ) = ( G ig,jg ) 1 ≤ i,j ≤ 12 ( g, G ) �− Lemma. Gram matrix G with automorphism group U ≤ A . There exists a faithful orthogonal repres. δ : U → O 3 ( R ) and M ∈ R 3 × 12 such that G := M tr M . δ ( g ) M = M π ( g ) for all g ∈ U, Lancaster, 13/06/2019

  18. Classification Minimal subgroups U of A ∼ = C 2 × A 5 up to conjugacy: � abc � ∼ � ac � ∼ � a � ∼ � d � ∼ � ad � ∼ = C 3 , = C 5 , = C 2 , = C 2 , = C 2 Lancaster, 13/06/2019

  19. Classification Minimal subgroups U of A ∼ = C 2 × A 5 up to conjugacy: � abc � ∼ � ac � ∼ � a � ∼ � d � ∼ � ad � ∼ = C 3 , = C 5 , = C 2 , = C 2 , = C 2 Lemma. If a Gram matrix is fixed by an element of order 3 or 5 , then its automorphism group also contains an element of order 2 . Lancaster, 13/06/2019

  20. Classification Minimal subgroups U of A ∼ = C 2 × A 5 up to conjugacy: � abc � ∼ � ac � ∼ � a � ∼ � d � ∼ � ad � ∼ = C 3 , = C 5 , = C 2 , = C 2 , = C 2 Lemma. If a Gram matrix is fixed by an element of order 3 or 5 , then its automorphism group also contains an element of order 2 . Faithful orthogonal representations of degree 3 of C 2 : generator maps to       1 0 0 − 1 0 0 − 1 0 0  ,  , 0 − 1 0 0 1 0 0 − 1 0     0 0 − 1 0 0 1 0 0 − 1 9 cases to consider Lancaster, 13/06/2019

  21. Classification Minimal subgroups U of A ∼ = C 2 × A 5 up to conjugacy: � abc � ∼ � ac � ∼ � a � ∼ � d � ∼ � ad � ∼ = C 3 , = C 5 , = C 2 , = C 2 , = C 2 Lemma. If a Gram matrix is fixed by an element of order 3 or 5 , then its automorphism group also contains an element of order 2 . Faithful orthogonal representations of degree 3 of C 2 : generator maps to       1 0 0 − 1 0 0 − 1 0 0  ,  , 0 − 1 0 0 1 0 0 − 1 0     0 0 − 1 0 0 1 0 0 − 1 9 cases to consider Determine the U -invariant Gram matrices! Lancaster, 13/06/2019

  22. Classification Let e 1 , e 2 , . . . , e 12 be the standard basis of R 12 × 1 , R := Q [ y 1 , . . . , y n ] . ( e i − e j ) tr G ( e i − e j ) − 1 , { i, j } ∈ { 1 , 2 } A , Def. ideal I gen. by and 4 × 4 minors of G , where y i are the entries of G corresp. to U -orbits Lancaster, 13/06/2019

  23. Classification Let e 1 , e 2 , . . . , e 12 be the standard basis of R 12 × 1 , R := Q [ y 1 , . . . , y n ] . ( e i − e j ) tr G ( e i − e j ) − 1 , { i, j } ∈ { 1 , 2 } A , Def. ideal I gen. by and 4 × 4 minors of G , where y i are the entries of G corresp. to U -orbits Def. A maximal ideal m � R associated to I is relevant if (a) rank ( G i,j + m ) ∈ ( R/m ) 12 × 12 at most 3 , (b) U = { g ∈ A | π ( g ) tr ( G i,j + m ) π ( g ) = ( G i,j + m ) } , (c) ∃ ι : R/m → R such that ( ι ( G i,j + m )) is positive semidefinite. Lancaster, 13/06/2019

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend