the extragalactic radio background from dark matter
play

The Extragalactic Radio Background from Dark Matter Annihilation - PowerPoint PPT Presentation

The Extragalactic Radio Background from Dark Matter Annihilation and the ARCADE-2 Excess Ke Fang JSI Fellow University of Maryland & NASA GSFC TeVPA - Oct 27, 2015 KF & Linden PRD.91.083501, 1412.7545 1 KF & Linden submitted to PRD,


  1. The Extragalactic Radio Background from Dark Matter Annihilation and the ARCADE-2 Excess Ke Fang JSI Fellow University of Maryland & NASA GSFC TeVPA - Oct 27, 2015 KF & Linden PRD.91.083501, 1412.7545 1 KF & Linden submitted to PRD, 1506.05807

  2. 
 Fixsen et al, ApJ, 0901.0555 Kogut et al, ApJ, 734, 4, 2011 Singal et al, MNRAS, 409, 1172, 2010 The ARCADE-2 Excess 22 MHz - 10 GHz 2

  3. 
 Fixsen et al, ApJ, 0901.0555 Kogut et al, ApJ, 734, 4, 2011 Singal et al, MNRAS, 409, 1172, 2010 The ARCADE-2 Excess 22 MHz - 10 GHz ⌘ − 2 . 6 ⇣ ν T arcade = 1 . 26 K GHz 2

  4. 
 Fixsen et al, ApJ, 0901.0555 Kogut et al, ApJ, 734, 4, 2011 Singal et al, MNRAS, 409, 1172, 2010 The ARCADE-2 Excess 22 MHz - 10 GHz ⌘ − 2 . 6 ⇣ ν T arcade = 1 . 26 K GHz ⌘ − 2 . 7 ⇣ ν T sources = 0 . 23 K GHz 2

  5. 
 Fixsen et al, ApJ, 0901.0555 Kogut et al, ApJ, 734, 4, 2011 Singal et al, MNRAS, 409, 1172, 2010 The ARCADE-2 Excess 22 MHz - 10 GHz ⌘ − 2 . 6 ⇣ ν T arcade = 1 . 26 K GHz ⌘ − 2 . 7 ⇣ ν T sources = 0 . 23 K GHz Exceeds the isotropic galactic diffuse emission & flux of extragalactic radio sources 2

  6. Dark matter YES Dark matter annihilation —> electrons —> diffusive synchrotron emission Fornengo et al, PRL, 107 (2011) 271302 Hooper et al, PRD, 86.103003, 2012 3

  7. Dark matter YES Dark matter NO Dark matter annihilation —> Unusual smoothness of the electrons —> diffusive unresolved radio background —> synchrotron emission unlikely from large-scale structure z=[0,1] z=[0,2] Planck z=[5,10] 857 GHz 0.10 [L(L+1)C L /2 π ] 1/2 ( ∆ T/T) 1 Mpc/h 2 Mpc/h VLA 8.4 GHz VLA 4.9 GHz 0.01 ATCA 8.7 GHz 1 • 10 4 2 • 10 4 3 • 10 4 0 L Fornengo et al, PRL, 107 (2011) 271302 Holder, ApJ 780 (2014) 112 Hooper et al, PRD, 86.103003, 2012 3

  8. Anisotropy Constraints Holder, ApJ 780 (2014) 112 z=[0,1] z=[0,2] Planck z=[5,10] 857 GHz 0.10 [L(L+1)C L /2 π ] 1/2 ( ∆ T/T) 1 Mpc/h 2 Mpc/h VLA 8.4 GHz VLA 4.9 GHz 0.01 ATCA 8.7 GHz 1 • 10 4 2 • 10 4 3 • 10 4 0 L 4

  9. Anisotropy Constraints Holder, ApJ 780 (2014) 112 z=[0,1] z=[0,2] Planck z=[5,10] 857 GHz 0.10 mass power spectrum [L(L+1)C L /2 π ] 1/2 ( ∆ T/T) 1 Mpc/h 2 Mpc/h VLA 8.4 GHz VLA 4.9 GHz 0.01 ATCA 8.7 GHz 1 • 10 4 2 • 10 4 3 • 10 4 0 L 4

  10. Anisotropy Constraints Holder, ApJ 780 (2014) 112 z=[0,1] z=[0,2] Planck z=[5,10] 857 GHz ✓ δ T 0.10 ◆ 2 ◆ 2 ✓ δ T T CMB mass power spectrum C ` ∝ [L(L+1)C L /2 π ] 1/2 ( ∆ T/T) = T excess T CMB T excess 1 Mpc/h 2 Mpc/h VLA 8.4 GHz VLA 4.9 GHz 0.01 ATCA 8.7 GHz 1 • 10 4 2 • 10 4 3 • 10 4 0 L 4

  11. Anisotropy Constraints Holder, ApJ 780 (2014) 112 z=[0,1] CMB observation z=[0,2] Planck z=[5,10] 857 GHz ✓ δ T 0.10 ◆ 2 ◆ 2 ✓ δ T T CMB mass power spectrum C ` ∝ [L(L+1)C L /2 π ] 1/2 ( ∆ T/T) = T excess T CMB T excess 1 Mpc/h 2 Mpc/h VLA 8.4 GHz VLA 4.9 GHz 0.01 ATCA 8.7 GHz 1 • 10 4 2 • 10 4 3 • 10 4 0 L 4

  12. Anisotropy Constraints Holder, ApJ 780 (2014) 112 z=[0,1] CMB observation z=[0,2] Planck z=[5,10] 857 GHz ✓ δ T 0.10 ◆ 2 ◆ 2 ✓ δ T T CMB mass power spectrum C ` ∝ [L(L+1)C L /2 π ] 1/2 ( ∆ T/T) = T excess T CMB T excess 1 Mpc/h 2 Mpc/h VLA 8.4 GHz VLA 4.9 GHz 0.01 ATCA 8.7 GHz 1 • 10 4 2 • 10 4 3 • 10 4 0 L uncertainties in excess temperature above 5 GHz -> requires a consistent computation of intensity & anisotropy 4

  13. Intensity of the Extragalactic DM signals Z d χδ 2 ( z ) W [(1 + z ) E s , χ ] I ( E s ) = Ando & Komatsu arXiv: 1301.5901, 0512217 KF & Linden PRD.91.083501, arXiv: 1412.7545 5

  14. ��������������������������������� Intensity of the Extragalactic DM signals / h σ v i dN dE s Z d χδ 2 ( z ) W [(1 + z ) E s , χ ] I ( E s ) = Ando & Komatsu arXiv: 1301.5901, 0512217 KF & Linden PRD.91.083501, arXiv: 1412.7545 5

  15. �������������������� ��������������������������������� Intensity of the Extragalactic DM signals / h σ v i dN dE s Z d χδ 2 ( z ) W [(1 + z ) E s , χ ] I ( E s ) = dM dn ( M, z ) Z Z dV ρ DM ( r, M, z ) 2 ∝ dM Ando & Komatsu arXiv: 1301.5901, 0512217 KF & Linden PRD.91.083501, arXiv: 1412.7545 5

  16. ��������������������������������� �������������������� ������������������ Intensity of the Extragalactic DM signals / h σ v i dN dE s Z d χδ 2 ( z ) W [(1 + z ) E s , χ ] I ( E s ) = dM dn ( M, z ) Z Z dV ρ DM ( r, M, z ) 2 ∝ dM Ando & Komatsu arXiv: 1301.5901, 0512217 KF & Linden PRD.91.083501, arXiv: 1412.7545 5

  17. �������������������������� �������������������� ������������������ ������������������� ��������������������������������� Intensity of the Extragalactic DM signals / h σ v i dN dE s Z d χδ 2 ( z ) W [(1 + z ) E s , χ ] I ( E s ) = dM dn ( M, z ) Z Z dV ρ DM ( r, M, z ) 2 ∝ dM Ando & Komatsu arXiv: 1301.5901, 0512217 KF & Linden PRD.91.083501, arXiv: 1412.7545 5

  18. Anisotropy of the Extragalactic DM signals Z d χ 1 χ 2 W 2 [(1 + z ) E s , χ ] P � 2 ( k, z ) C ` ( E s ) = I ( E s ) 2 Ando & Komatsu arXiv: 1301.5901, 0512217 KF & Linden PRD.91.083501, arXiv: 1412.7545 6

  19. ������������������ ������������������������������������������������� Anisotropy of the Extragalactic DM signals Z d χ 1 χ 2 W 2 [(1 + z ) E s , χ ] P � 2 ( k, z ) C ` ( E s ) = I ( E s ) 2 Ando & Komatsu arXiv: 1301.5901, 0512217 KF & Linden PRD.91.083501, arXiv: 1412.7545 6

  20. ������������������ ��������������������������� ������������������������������������������������� Anisotropy of the Extragalactic DM signals Z d χ 1 χ 2 W 2 [(1 + z ) E s , χ ] P � 2 ( k, z ) C ` ( E s ) = I ( E s ) 2 P ( k, z ) = P 1 h ( k, z ) + P 2 h ( k, z ) Z dM dn u ( k, M ) | 2 P 1 h ( k, z ) = dM | ˜ Ando & Komatsu arXiv: 1301.5901, 0512217 KF & Linden PRD.91.083501, arXiv: 1412.7545 6

  21. ���������������������������������������������������� Substructure Contribution ρ B ρ 2 sync ( r, M ) = ρ 2 DM ( r, M ) ρ B + ρ CMB 7

  22. ������������������������������������� ���������������������������������������������������� ����������������������������� Substructure Contribution ρ B ρ 2 sync ( r, M ) = ρ 2 DM ( r, M ) ρ B + ρ CMB ◆ − 0 . 26 ✓ ρ h ( r ) 1 − f s ( r ) = 7 × 10 − 3 ρ h ( r = 100 kpc) Kamionkowski+ PRD 81 043532 (2010) 7

  23. ����������������������������� ���������������������������������������������������� ������������������������������������� ������������������������� Substructure Contribution ρ B ρ 2 sync ( r, M ) = ρ 2 DM ( r, M ) ρ B + ρ CMB ✓ M ✓ r ◆ 2 # − 3 βη / 2 ◆ α " B ( M, r ) = B 0 1 + M 0 r c ◆ − 0 . 26 ✓ ρ h ( r ) 1 − f s ( r ) = 7 × 10 − 3 ρ h ( r = 100 kpc) B sub = 4 µG for M = 10 14 M � Kamionkowski+ PRD 81 043532 (2010) 7

  24. Results with different DM models KF & Linden PRD.91.083501, 1412.7545 8

  25. A Consistent Picture KF & Linden PRD.91.083501, 1412.7545 9

  26. A Consistent Picture KF & Linden PRD.91.083501, 1412.7545 9

  27. A Consistent Picture - model III KF & Linden PRD.91.083501, 1412.7545 10

  28. Alternative to Substructure - Alfven Re-acceleration in Galaxy Clusters Image credit: Bonafede et. al. 2014 KF & Linden submitted to PRD, 1506.05807 11

  29. Alternative to Substructure - Alfven Re-acceleration in Galaxy Clusters Image credit: Bonafede et. al. 2014 KF & Linden submitted to PRD, 1506.05807 11

  30. Alternative to Substructure - Alfven Re-acceleration in Galaxy Clusters ∂ W k ( t ) = − Γ ( k ) W k ( t ) + I A ( k, t ) Image credit: ∂ t Bonafede et. al. 2014  � ∂ t = 1 ∂ f ∂ ∂ f p 2 D pp ∂ p + Sp 4 f ∂ p p KF & Linden submitted to PRD, 1506.05807 11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend