the eta invariant and equivariant bordism of flat
play

The eta invariant and equivariant bordism of flat manifolds Ricardo - PowerPoint PPT Presentation

Introduction Z p -manifolds Spectral asymmetry of Dirac operators Appendix: Number theoretical tools Epilogue The eta invariant and equivariant bordism of flat manifolds Ricardo Podest a (Universidad Nacional de C ordoba, Argentina)


  1. Introduction Z p -manifolds Compact flat manifolds Spectral asymmetry of Dirac operators Z p -manifolds Appendix: Number theoretical tools Spin structures Epilogue The first non-trivial example A Z 2 -manifold in dimension 2 The Klein bottle: K 2 = � [ − 1 2 , L e 1 , L e 2 �\ R 2 1 ] L e 2 where Λ = Z 2 , F ≃ � [ − 1 1 ] � ≃ Z 2 Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  2. Introduction Z p -manifolds Compact flat manifolds Spectral asymmetry of Dirac operators Z p -manifolds Appendix: Number theoretical tools Spin structures Epilogue Holonomy representation The action by conjugation on Λ by F ≃ Λ \ Γ B L λ B − 1 = L B λ defines the integral holonomy representation ρ : F → GL n ( Z ) This ρ is far from determining a flat manifold uniquely There are (already in dim 4) non-homeomorphic orientable flat manifolds M Γ , M Γ ′ with the same integral holonomy representation, i.e. ρ Γ = ρ Γ ′ but M Γ �≃ M Γ ′ Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  3. Introduction Z p -manifolds Compact flat manifolds Spectral asymmetry of Dirac operators Z p -manifolds Appendix: Number theoretical tools Spin structures Epilogue Geometric properties Bieberbach theorems M Γ = T Λ / F = ( R n / Λ) / (Γ / Λ) T Λ → M Γ , diffeomorphic ⇔ homeomorphic ⇔ homotopically equivalent Γ ≃ Γ ′ π n ( M Γ ) = π n ( M ′ M Γ ≃ M Γ ′ ⇔ ⇔ Γ ) since π n ( M Γ ) = 0 for n ≥ 2 In each dimension, there is a finite number of affine equivalent classes of compact flat manifolds Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  4. Introduction Z p -manifolds Compact flat manifolds Spectral asymmetry of Dirac operators Z p -manifolds Appendix: Number theoretical tools Spin structures Epilogue Geometric properties Every finite group can be realized as the holonomy group of a compact flat manifold [Auslander-Kuranishi ‘57] Every compact flat manifold bounds, i.e., if M n is a compact flat manifold, then there is a N n +1 such that ∂ N = M [Hamrick-Royster ‘82] Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  5. Introduction Z p -manifolds Compact flat manifolds Spectral asymmetry of Dirac operators Z p -manifolds Appendix: Number theoretical tools Spin structures Epilogue Z p -manifolds We will now describe the Z p -manifolds M Γ M Γ satisfies 0 → Λ ≃ Z n → Γ → Z p → 1 M Γ can be thought to be constructed by integral representations of Z p = Z [ Z p ]-modules Z p -modules were classified by Reiner [Proc AMS ‘57] Z p -manifolds were classified by Charlap [Annals Math ‘65] We won’t need Charlap’s classification, just Reiner’s Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  6. Introduction Z p -manifolds Compact flat manifolds Spectral asymmetry of Dirac operators Z p -manifolds Appendix: Number theoretical tools Spin structures Epilogue Reiner Z p -modules Any Z p -module is of the form Λ( a , b , c , a ) := a ⊕ ( a − 1) O ⊕ b Z [ Z p ] ⊕ c Id where a , b , c ∈ N 0 , a + b > 0 ξ = primitive p th -root of unity O = Z [ ξ ] = ring of algebraic integers in Q ( ξ ) a = ideal in O Z [ Z p ] = group ring over Z Id = trivial Z p -module Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  7. Introduction Z p -manifolds Compact flat manifolds Spectral asymmetry of Dirac operators Z p -manifolds Appendix: Number theoretical tools Spin structures Epilogue Z p -actions The actions on the modules are given by multiplication by ξ In matrix form, the action of ξ on O and Z [ Z p ] are given by     0 − 1 0 1 1 0 − 1 1 0 0   1 − 1 1 0     C p = .  ∈ GL p − 1 ( Z ) , J p = .  ∈ GL p ( Z ) ...  ...  . . . . 0 − 1 0 0 1 0 1 − 1 The action on a is given by C p , a ∈ GL p − 1 ( Z ) with C p , a ∼ C p n J p = 1, n C p = n C p , a = 0 Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  8. Introduction Z p -manifolds Compact flat manifolds Spectral asymmetry of Dirac operators Z p -manifolds Appendix: Number theoretical tools Spin structures Epilogue Properties of Z p -manifolds Proposition Let M Γ = Γ \ R n be a Z p -manifold with Γ = � γ, Λ � , γ = BL b . Then ( BL b ) p = L b p where b p = � p − 1 j =0 B j b ∈ L Λ � ( � p − 1 j =0 B j )Λ As a Z p -module, Λ ≃ Λ( a , b , c , a ) , with c ≥ 1 and n = a ( p − 1) + bp + c a , b , c are uniquely determined by the ≃ class of Γ Γ is conjugate in I ( R n ) to a Bieberbach group ˜ Γ = � ˜ γ, Λ � b where B ˜ b = ˜ b and ˜ b ∈ 1 with ˜ γ = BL ˜ p Λ � Λ Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  9. Introduction Z p -manifolds Compact flat manifolds Spectral asymmetry of Dirac operators Z p -manifolds Appendix: Number theoretical tools Spin structures Epilogue Properties of Z p -manifolds Proposition (continued) n B = 1 ⇔ ( b , c ) = (0 , 1) and in this case γ = BL b can be chosen so that b = 1 p e n One has H 1 ( M Γ , Z ) ≃ Z b + c ⊕ Z a p H 1 ( M Γ , Z ) ≃ Z b + c and hence n B = b + c = β 1 M Γ is orientable Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  10. Introduction Z p -manifolds Compact flat manifolds Spectral asymmetry of Dirac operators Z p -manifolds Appendix: Number theoretical tools Spin structures Epilogue The models For our purposes, it will suffice to work with the “models” M b , c p , Λ b , c p , a ( a ) � \ R n p , a ( a ) = � BL e n where = X a Z n − c ⊥ Λ b , c p , a ( a ) = X a L Z n X − 1 ⊕ Z c a for some X a ∈ GL n ( R ) Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  11. Introduction Z p -manifolds Compact flat manifolds Spectral asymmetry of Dirac operators Z p -manifolds Appendix: Number theoretical tools Spin structures Epilogue The models and B = diag( B p , . . . , B p , 1 , . . . , 1 ) � �� � � �� � b + c a + b with   B ( 2 π p )   B ( 2 · 2 π   ) p q = [ p − 1   B p = 2 ]   ...   B ( 2 q π p ) � cos t − sin t � B ( t ) = t ∈ R sin t cos t Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  12. Introduction Z p -manifolds Compact flat manifolds Spectral asymmetry of Dirac operators Z p -manifolds Appendix: Number theoretical tools Spin structures Epilogue Exceptional Z p -manifolds In Charlap’s classification there is a distinction between exceptional and non-exceptional Z p -manifolds A Z p -manifold is called exceptional if Λ ≃ Λ( a , 0 , 1 , a ) We will use exceptional Z p -manifolds M 0 , 1 p , a ( a ) of dim n = a ( p − 1) + 1 ( ∴ odd) Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  13. Introduction Z p -manifolds Compact flat manifolds Spectral asymmetry of Dirac operators Z p -manifolds Appendix: Number theoretical tools Spin structures Epilogue Example: the “tricosm” It is the only 3-dimensional Z 3 -manifold It is exceptional: M 3 , 1 = M 0 , 1 3 , 1 ( O ), with O = Z [ 2 π i 3 ] 2 π i 3 ] ⊕ Z As a Z 3 -module, Λ ≃ Z [ e � 0 − 1 � with Z 3 -(integral) action given by C = 1 − 1 1 Thus 3 , L f 1 , L f 2 , L e 3 �\ R 3 M 3 , 1 = � BL e 3 with � � √ − 1 / 2 − 3 / 2 √ B = ∈ SO(3) 3 / 2 − 1 / 2 1 where f 1 , f 2 , e 3 is a Z -basis of Λ 3 , 1 = X Z 2 ⊕ Z and X ∈ GL 3 ( R ) is such that X C X − 1 = B Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  14. Introduction Z p -manifolds Compact flat manifolds Spectral asymmetry of Dirac operators Z p -manifolds Appendix: Number theoretical tools Spin structures Epilogue Spin group and maximal torus The spin group Spin( n ) is the universal covering of SO( n ) π : Spin( n ) 2 → SO( n ) n ≥ 3 A maximal torus of Spin( n ) is given by � � x ( t 1 , . . . , t m ) : t 1 , . . . , t m ∈ R , m = [ n T = 2 ] m � x ( t 1 , . . . , t m ) := (cos t j + sin t j e 2 j − 1 e 2 j ) j =1 where { e i } is the canonical basis of R n Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  15. Introduction Z p -manifolds Compact flat manifolds Spectral asymmetry of Dirac operators Z p -manifolds Appendix: Number theoretical tools Spin structures Epilogue Spin group and maximal torus Notation: x a ( t 1 , t 2 , . . . , t q ) := x ( t 1 , t 2 , . . . , t q , . . . , t 1 , t 2 , . . . , t q ) a ∈ N � �� � � �� � a 1 A maximal torus in SO( n ) is given by T 0 = { x 0 ( t 1 , . . . , t m ) : t 1 , . . . , t m ∈ R } � � x 0 ( t 1 , . . . , t m ) := diag B ( t 1 ) , . . . , B ( t m ) , “1” The restriction map π : T → T 0 duplicates angles x ( t 1 , . . . , t m ) �→ x 0 (2 t 1 , . . . , 2 t m ) Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  16. Introduction Z p -manifolds Compact flat manifolds Spectral asymmetry of Dirac operators Z p -manifolds Appendix: Number theoretical tools Spin structures Epilogue Spin representations The spin representation of Spin( n ) is the restriction ( L n , S n ) of any irreducible representation of Cliff ( C n ) dim C S n = 2 [ n / 2] ( L n , S n ) is irreducible if n is odd ( L n , S n ) is reducible if n is even, S n = S + n ⊕ S − n L ± n := L n | S ± n are the half-spin representations Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  17. Introduction Z p -manifolds Compact flat manifolds Spectral asymmetry of Dirac operators Z p -manifolds Appendix: Number theoretical tools Spin structures Epilogue Characters of spin representations Characters of L n , L ± n are known on the maximal torus Lemma (Miatello-P, TAMS ‘06) m � χ Ln ( x ( t 1 , . . . , t m )) = 2 m cos t j j =1 n ( x ( t 1 , . . . , t m )) = 2 m − 1 � m � m � � cos t j ± i m χ sin t j L ± j =1 j =1 where m = [ n / 2] Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  18. Introduction Z p -manifolds Compact flat manifolds Spectral asymmetry of Dirac operators Z p -manifolds Appendix: Number theoretical tools Spin structures Epilogue Spin structures Let M = orientable Riemannian manifold B ( M ) = SO( n )-principal bundle of oriented frames on M A spin structure on M is an equivariant double covering p : ˜ B ( M ) → B ( M ) ˜ B ( M ) is a Spin( n )-principal bundle of M , i.e. ✲ · ˜ ˜ B ( M ) B ( M ) ❅ ❅ π ˜ p p ❅ ❅ ❄ ❄ ❘ ❅ ✲ ✲ B ( M ) B ( M ) M π · Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  19. Introduction Z p -manifolds Compact flat manifolds Spectral asymmetry of Dirac operators Z p -manifolds Appendix: Number theoretical tools Spin structures Epilogue Spin structures on compact flat manifolds The spin structures on M Γ are in a 1–1 correspondence with group homomorphisms ε commuting the diagram Spin( n ) ✒ � � ε π � ❄ � ✲ SO( n ) Γ r Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  20. Introduction Z p -manifolds Compact flat manifolds Spectral asymmetry of Dirac operators Z p -manifolds Appendix: Number theoretical tools Spin structures Epilogue Spin structures on compact flat manifolds Let M Γ be a Z p -manifold, Γ = � γ, Λ = Z f 1 ⊕ · · · ⊕ Z f n � . Then ε is determined by ε ( γ ) and δ j := ε ( L f j ) ∈ {± 1 } 1 ≤ j ≤ n ∃ necessary and sufficient conditions on ε : Γ → Spin( n ) for defining a spin structure on M Γ when F ≃ Z k 2 or F ≃ Z n [Miatello-P, MZ ‘04] Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  21. Introduction Z p -manifolds Compact flat manifolds Spectral asymmetry of Dirac operators Z p -manifolds Appendix: Number theoretical tools Spin structures Epilogue Spin structures on flat manifolds Not every flat manifold is spin [Vasquez ‘70] Flat tori are spin [Friedrich ‘84] Z k 2 -manifolds are not spin (in general) but Z 2 -manifolds are always spin [Miatello-P ‘04] Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  22. Introduction Z p -manifolds Compact flat manifolds Spectral asymmetry of Dirac operators Z p -manifolds Appendix: Number theoretical tools Spin structures Epilogue Spin structures on Z p -manifolds Existence every F -manifold with | F | odd is spin (Vasquez, JDG ‘70) thus every Z p -manifold is spin Number if M is spin, the spin structures are classified by H 1 ( M , Z 2 ) If M is a Z p -manifold, since H 1 ( M , Z 2 ) ≃ Z b + c , 2 # { spin structures of M } = 2 b + c = 2 β 1 Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  23. Introduction Z p -manifolds Compact flat manifolds Spectral asymmetry of Dirac operators Z p -manifolds Appendix: Number theoretical tools Spin structures Epilogue Spin structures on the models M b , c p , a ( a ) Proposition A Z p -manifold M admits exactly 2 β 1 spin structures, only one of which is of trivial type. p , a ( a ) , its 2 b + c spin structures are explicitly given by If M = M b , c � , δ b +1 , . . . , δ b + c − 1 , ( − 1) h +1 � ε | Λ = 1 , . . . , 1 , δ 1 , . . . , δ 1 , . . . , δ b , . . . , δ b � �� � � �� � � �� � p p a ( p − 1) � π � ε ( γ ) = ( − 1) ( a + b )[ q +1 2 ]+ h +1 x a + b p , . . . , q π p , 2 π p � � ∈ {± 1 } n Note: here ε | Λ = ε ( L f 1 ) , . . . , ε ( L f n ) Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  24. Introduction Z p -manifolds Compact flat manifolds Spectral asymmetry of Dirac operators Z p -manifolds Appendix: Number theoretical tools Spin structures Epilogue Spin structures on exceptional Z p -manifolds Remark If M is an exceptional Z p -manifold, i.e. M ≃ M 0 , 1 p , a ( a ) , then M has only 2 spin structures ε 1 , ε 2 given by � 1 , . . . , 1 , ( − 1) h +1 � ε h | Λ = � π � ε h ( γ ) = ( − 1) a [ q +1 2 ]+ h +1 x a p , 2 π p , . . . , q π p with h = 1 , 2 . In particular, ε 1 is of trivial type Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  25. Introduction Spectrum of twisted Dirac operators Z p -manifolds Eta series of Z p -manifolds Spectral asymmetry of Dirac operators Eta invariants of Z p -manifolds Appendix: Number theoretical tools The untwisted case ℓ = 0 Epilogue Twisted Dirac operators on flat manifolds Let ( M Γ , ε ) = compact flat spin n -manifold ρ : Γ → U ( V ) = unitary representation such that ρ | Λ = 1 The spin Dirac operator twisted by ρ is n � L n ( e i ) ∂ D ρ = ∂ x i i =1 where { e 1 , . . . , e n } is an o.n.b. of R n Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  26. Introduction Spectrum of twisted Dirac operators Z p -manifolds Eta series of Z p -manifolds Spectral asymmetry of Dirac operators Eta invariants of Z p -manifolds Appendix: Number theoretical tools The untwisted case ℓ = 0 Epilogue Twisted Dirac operators on flat manifolds D ρ acts on smooth sections of the spinor bundle D ρ : Γ ∞ ( S ρ ( M Γ , ε )) → Γ ∞ ( S ρ ( M Γ , ε )) where S ρ ( M Γ , ε ) = Γ \ ( R n × (S n ⊗ V )) → Γ \ R n � � � � γ · ( x , ω ⊗ v ) = γ x , L ε ( γ ) ( ω ) ⊗ ρ ( γ ) v Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  27. Introduction Spectrum of twisted Dirac operators Z p -manifolds Eta series of Z p -manifolds Spectral asymmetry of Dirac operators Eta invariants of Z p -manifolds Appendix: Number theoretical tools The untwisted case ℓ = 0 Epilogue Spectrum of D ρ on compact flat manifolds The spectrum of D ρ on ( M Γ , ε ) is �� � � ± 2 πµ, d ± : µ = || v || , v ∈ Λ ∗ Spec D ρ ( M Γ , ε ) = ρ,µ (Γ , ε ) ε where ε = { u ∈ Λ ∗ : ε ( L λ ) = e 2 π i λ · u Λ ∗ ∀ λ ∈ Λ } Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  28. Introduction Spectrum of twisted Dirac operators Z p -manifolds Eta series of Z p -manifolds Spectral asymmetry of Dirac operators Eta invariants of Z p -manifolds Appendix: Number theoretical tools The untwisted case ℓ = 0 Epilogue Theorem (Miatello-P, TAMS ‘06) The multiplicities of λ = ± 2 πµ are given by (i) for µ > 0 : � � e − 2 π iu · b χ d ± 1 ρ,µ (Γ , ε ) = χ ρ ( γ ) ( x γ ) | F | L ± σ ( u , x γ ) n − 1 u ∈ (Λ ∗ ε,µ ) B γ = BL b ∈ Λ \ Γ ε,µ ) B = { v ∈ Λ ∗ with (Λ ∗ ε : Bv = v , || v || = µ } (ii) for µ = 0 :  � 1 χ ρ ( γ ) χ Ln ( ε ( γ )) ε | Λ = 1  | F | d ρ, 0 (Γ , ε ) = γ ∈ Λ \ Γ  0 ε | Λ � = 1 Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  29. Introduction Spectrum of twisted Dirac operators Z p -manifolds Eta series of Z p -manifolds Spectral asymmetry of Dirac operators Eta invariants of Z p -manifolds Appendix: Number theoretical tools The untwisted case ℓ = 0 Epilogue Eta series of flat manifolds ⋆ For η D ρ ( s ) we have a general expression for arbitrary compact flat manifolds an explicit formula for: Z k 2 -manifolds a family of Z 4 -manifolds Z p -manifolds in the untwisted case ([Miatello-P, TAMS ‘06, PAMQ ‘08], [P, Rev UMA ‘05]) ⋆ We will compute η D ℓ ( s ) for any Z p -manifold Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  30. Introduction Spectrum of twisted Dirac operators Z p -manifolds Eta series of Z p -manifolds Spectral asymmetry of Dirac operators Eta invariants of Z p -manifolds Appendix: Number theoretical tools The untwisted case ℓ = 0 Epilogue Notations From now on we consider p = 2 q + 1 an odd prime M = Z p -manifold of dim n ε h = spin structure on M , 1 ≤ h ≤ 2 b + c For 0 ≤ ℓ ≤ p − 1, the characters 2 π ik ℓ ρ ℓ : Z p → C ∗ k �→ e p D ℓ = Dirac operator twisted by ρ ℓ d ± ℓ,µ, h := d ± ρ ℓ ,µ ( M , ε h ) Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  31. Introduction Spectrum of twisted Dirac operators Z p -manifolds Eta series of Z p -manifolds Spectral asymmetry of Dirac operators Eta invariants of Z p -manifolds Appendix: Number theoretical tools The untwisted case ℓ = 0 Epilogue The eta series for Z p -manifolds Recall that d + ℓ,µ, h − d − � ℓ,µ, h η ℓ, h ( s ) = (2 πµ ) s ± 2 πµ ∈A Although the expressions for d ± ℓ,µ, h are not explicit, the differences d + ℓ,µ, h − d − ℓ,µ, h can be computed Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  32. Introduction Spectrum of twisted Dirac operators Z p -manifolds Eta series of Z p -manifolds Spectral asymmetry of Dirac operators Eta invariants of Z p -manifolds Appendix: Number theoretical tools The untwisted case ℓ = 0 Epilogue An important reduction For flat manifolds, by a result in [Miatello-P, TAMS ‘06], n B > 1 ∀ BL b ∈ Γ ⇒ Spec D ( M ) is symmetric thus d + ℓ,µ, h = d − ⇒ η D ( s ) ≡ 0 ℓ,µ, h For Z p -manifolds, since n B = 1 ⇔ ( b , c ) = (0 , 1) then η ( s ) ≡ 0 for non-exceptional Z p -manifolds Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  33. Introduction Spectrum of twisted Dirac operators Z p -manifolds Eta series of Z p -manifolds Spectral asymmetry of Dirac operators Eta invariants of Z p -manifolds Appendix: Number theoretical tools The untwisted case ℓ = 0 Epilogue An important reduction We can focus on exceptional Z p -manifolds Thus, it suffices to compute d + ℓ,µ, h − d − ℓ,µ, h , η ℓ, h ( s ) , η ℓ, h for the exceptional Z p -manifolds only In particular, we can assume that M = M 0 , 1 p , a ( a ) (i.e. b = 1 p e n ) Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  34. Introduction Spectrum of twisted Dirac operators Z p -manifolds Eta series of Z p -manifolds Spectral asymmetry of Dirac operators Eta invariants of Z p -manifolds Appendix: Number theoretical tools The untwisted case ℓ = 0 Epilogue The differences d + ℓ,µ, h − d − ℓ,µ, h Key lemma For an exceptional Z p -manifold ( M , ε h ) we have p − 1 � ( − 1) k ( h +1) � k � a e 2 π ik ℓ d + ℓ,µ, h − d − sin( 2 πµ k ℓ,µ, h = κ p , a ) p p p k =1 where κ p , a = ( − 1) ( p 2 − 1 ) a +1 i m +1 2 p a 2 − 1 8 Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  35. Introduction Spectrum of twisted Dirac operators Z p -manifolds Eta series of Z p -manifolds Spectral asymmetry of Dirac operators Eta invariants of Z p -manifolds Appendix: Number theoretical tools The untwisted case ℓ = 0 Epilogue Sketch of proof I Apply the general multiplicity formula to this case p − 1 � � 2 π i ℓ k e − 2 π iu · b k χ d ± ℓ,µ, h = 1 ( ε h ( γ k )) e p ± σ ( u , x γ k ) p L n − 1 k =0 ε h ,µ ) Bk u ∈ (Λ ∗ ε h ) B k = R e n and hence note that (Λ ∗ ε h ,µ ) B k = {± µ e n } (Λ ∗ Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  36. Introduction Spectrum of twisted Dirac operators Z p -manifolds Eta series of Z p -manifolds Spectral asymmetry of Dirac operators Eta invariants of Z p -manifolds Appendix: Number theoretical tools The untwisted case ℓ = 0 Epilogue Sketch of proof II Thus, we get � p − 1 � � 2 π ik ℓ d ± ℓ,µ, h = 1 2 m − 1 | Λ ∗ p S ± ε h ,µ | + e µ, h ( k ) p k =1 where − 2 π i µ k 2 π i µ k S ± n − 1 ( ε h ( γ k )) + e n − 1 ( ε h ( γ k )) µ, h ( k ) := e χ L ± χ L ∓ p p (only 2-terms sums) Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  37. Introduction Spectrum of twisted Dirac operators Z p -manifolds Eta series of Z p -manifolds Spectral asymmetry of Dirac operators Eta invariants of Z p -manifolds Appendix: Number theoretical tools The untwisted case ℓ = 0 Epilogue Sketch of proof III Note that � k π � ε h ( γ k ) = ( − 1) s h , k x a p , . . . , qk π p , 2 k π p for 1 ≤ k ≤ p , where s h , k := k ([ q +1 2 ] a + h + 1) Compute n − 1 ( ε h ( γ k )) = ( − 1) s h , k 2 m − 1 �� q � a ± i m � q � a � � � cos( jk π sin( jk π χ p ) p ) L ± j =1 j =1 compute the blue trigonometric products Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  38. Introduction Spectrum of twisted Dirac operators Z p -manifolds Eta series of Z p -manifolds Spectral asymmetry of Dirac operators Eta invariants of Z p -manifolds Appendix: Number theoretical tools The untwisted case ℓ = 0 Epilogue The differences d + ℓ,µ, h − d − ℓ,µ, h Proposition Let ( M , ε h ) be an exceptional Z p -manifold. Put r = [ n 4 ] . (i) If a is even then d + 0 ,µ, h − d − 0 ,µ, h = 0 � a ± ( − 1) r p p | h ( ℓ ∓ µ ) 2 d + ℓ,µ, h − d − ℓ,µ, h = 0 otherwise Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  39. Introduction Spectrum of twisted Dirac operators Z p -manifolds Eta series of Z p -manifolds Spectral asymmetry of Dirac operators Eta invariants of Z p -manifolds Appendix: Number theoretical tools The untwisted case ℓ = 0 Epilogue The differences d + ℓ,µ, h − d − ℓ,µ, h Proposition (continued) (ii) If a is odd then ℓ,µ, h = ( − 1) q + r �� 2( ℓ − µ ) �� � � 2( ℓ + µ ) a − 1 d + ℓ,µ, h − d − − p 2 p p In particular, � 0 p ≡ 1 (4) d + 0 ,µ, h − d − 0 ,µ, h = � 2 µ � ( − 1) r 2 a − 1 p p ≡ 3 (4) 2 p Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  40. Introduction Spectrum of twisted Dirac operators Z p -manifolds Eta series of Z p -manifolds Spectral asymmetry of Dirac operators Eta invariants of Z p -manifolds Appendix: Number theoretical tools The untwisted case ℓ = 0 Epilogue The differences d + ℓ,µ, h − d − ℓ,µ, h Sketch of proof Rewrite d + 0 ,µ, h − d − 0 ,µ, h in terms of “character Gauß sums”  − i m +1 2 p a χ 0 2 − 1 F  h ( ℓ, c µ ) a even d + 0 ,µ, h − d − 0 ,µ, h = 2 − 1 ( − 1) ( p 2 − 1  ) F χ p − i m +1 2 p a h ( ℓ, c µ ) a odd 8 where χ 0 = trivial character mod p χ p = quadratic character mod p Compute the blue Gauß sums Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  41. Introduction Spectrum of twisted Dirac operators Z p -manifolds Eta series of Z p -manifolds Spectral asymmetry of Dirac operators Eta invariants of Z p -manifolds Appendix: Number theoretical tools The untwisted case ℓ = 0 Epilogue The eta series η ℓ, h ( s ) η ℓ, h ( s ) can be computed in terms of Hurwitz zeta functions ∞ � 1 ζ ( s , α ) = ( n + α ) s n =0 where α ∈ (0 , 1] Re ( s ) > 1 Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  42. Introduction Spectrum of twisted Dirac operators Z p -manifolds Eta series of Z p -manifolds Spectral asymmetry of Dirac operators Eta invariants of Z p -manifolds Appendix: Number theoretical tools The untwisted case ℓ = 0 Epilogue The eta series η ℓ, h ( s ) Theorem Let ( M , ε h ) be an exceptional Z p -manifold. Put r = [ n 4 ] , t = [ p 4 ] . (i) If a is even then η 0 , 1 ( s ) = η 0 , 2 ( s ) = 0 and for ℓ � = 0 2 � � η ℓ, 1 ( s ) = ( − 1) r a p ) − ζ ( s , p − ℓ ζ ( s , ℓ (2 π p ) s p p )  � � ( − 1) r a  ζ ( s , 1 2 + ℓ p ) − ζ ( s , 1 2 − ℓ  (2 π p ) s p p ) 1 ≤ ℓ ≤ q 2 η ℓ, 2 ( s ) = � �  ( − 1) r a  ζ ( s , 1 2 − p − ℓ p ) − ζ ( s , 1 2 + p − ℓ (2 π p ) s p p ) q < ℓ < p 2 Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  43. Introduction Spectrum of twisted Dirac operators Z p -manifolds Eta series of Z p -manifolds Spectral asymmetry of Dirac operators Eta invariants of Z p -manifolds Appendix: Number theoretical tools The untwisted case ℓ = 0 Epilogue The eta series η ℓ, h ( s ) Theorem (continued) (ii) If a is odd then p − 1 � � � η ℓ, 1 ( s ) = ( − 1) t + r a − 1 ( ℓ − j p ) − ( ℓ + j ζ ( s , j (2 π p ) s p p ) p ) 2 j =1 p − 1 � � � η ℓ, 2 ( s ) = ( − 1) q + r a − 1 ( 2 ℓ − (2 j +1) ) − ( 2 ℓ +(2 j +1) ζ ( s , 2 j +1 ( π p ) s p ) 2 p ) 2 p p j =0 In particular, η 0 , h ( s ) = 0 for p ≡ 1 (4) Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  44. Introduction Spectrum of twisted Dirac operators Z p -manifolds Eta series of Z p -manifolds Spectral asymmetry of Dirac operators Eta invariants of Z p -manifolds Appendix: Number theoretical tools The untwisted case ℓ = 0 Epilogue Papers on eta-invariants Incomplete list of authors M. Atiyah, V. Patodi, I. Singer S. Goette P. Gilkey J. Park W. M¨ uller R. Mazzeo, R. Melrose, P. Piazza N. Hitchin X. Dai, D. Freed H. Donelly J. Br¨ uning, M. Lesch U. Bunke W. Zhang and others Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  45. Introduction Spectrum of twisted Dirac operators Z p -manifolds Eta series of Z p -manifolds Spectral asymmetry of Dirac operators Eta invariants of Z p -manifolds Appendix: Number theoretical tools The untwisted case ℓ = 0 Epilogue Computation of eta invariants We will now compute , for 0 ≤ ℓ ≤ p − 1, the eta invariants η ℓ = η ℓ (0) the reduced eta invariants η ℓ = η ℓ + dim ker D ℓ ¯ mod Z 2 the relative eta invariants η ℓ − ¯ ¯ η 0 Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  46. Introduction Spectrum of twisted Dirac operators Z p -manifolds Eta series of Z p -manifolds Spectral asymmetry of Dirac operators Eta invariants of Z p -manifolds Appendix: Number theoretical tools The untwisted case ℓ = 0 Epilogue Eta invariants η ℓ, h Theorem Let ( M , ε h ) be an exceptional Z p -manifold. Put r = [ n 4 ] , t = [ p 4 ] . (i) If a is even then η 0 , h = 0 and for ℓ � = 0 η ℓ, 1 = ( − 1) r p 2 − 1 ( p − 2 ℓ ) a � � η ℓ, 2 = ( − 1) r p a 2 − 1 2 [ 2 ℓ p ] p − ℓ Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  47. Introduction Spectrum of twisted Dirac operators Z p -manifolds Eta series of Z p -manifolds Spectral asymmetry of Dirac operators Eta invariants of Z p -manifolds Appendix: Number theoretical tools The untwisted case ℓ = 0 Epilogue Eta invariants η ℓ, h Theorem (continued) (ii) If a is odd then  a − 1 2 S −  ( − 1) t + r +1 p 1 ( ℓ, p ) p ≡ 1 (4)   η ℓ, 1 = p − 1 2 � � � j � � a − 1  ( − 1) t + r p S + 1 ( ℓ, p ) + 2  j p ≡ 3 (4)  p p j =1  2 � � 2 � � a − 1 S − S − ( − 1) q + r +1 p  2 ( ℓ, p ) − 1 ( ℓ, p ) p ≡ 1 (4)  p    2 � � 2 � a − 1 S + S + ( − 1) q + r p 2 ( ℓ, p ) + 1 ( ℓ, p ) + η ℓ, 2 = p   p − 1 � � 2 � � j � �   1 − ( 2 + p ) j p ≡ 3 (4)  p p j =1 Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  48. Introduction Spectrum of twisted Dirac operators Z p -manifolds Eta series of Z p -manifolds Spectral asymmetry of Dirac operators Eta invariants of Z p -manifolds Appendix: Number theoretical tools The untwisted case ℓ = 0 Epilogue Eta invariants η ℓ, h where Notation p − ℓ − 1 ℓ − 1 � � � j � � j � S ± 1 ( ℓ, p ) := ± p p j =1 j =1 � � � � 2 ℓ 2 ℓ p + p − 2 ℓ − 1 2 ℓ − p − 1 p � � p � j � � j � S ± 2 ( ℓ, p ) := ± p p j =1 j =1 Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  49. Introduction Spectrum of twisted Dirac operators Z p -manifolds Eta series of Z p -manifolds Spectral asymmetry of Dirac operators Eta invariants of Z p -manifolds Appendix: Number theoretical tools The untwisted case ℓ = 0 Epilogue Eta invariants η ℓ, h Sketch of proof Evaluate η ℓ, h ( s ) in s = 0, using that ζ (0 , α ) = 1 2 − α a even trivial, a odd: p − 1 � � � η ℓ, 1 (0) = ( − 1) t + r p a − 1 ( ℓ − j p ) − ( ℓ + j ( 1 2 − j p ) p ) 2 j =1 p − 1 � � � η ℓ, 2 (0) = ( − 1) q + r p a − 1 ( 2 ℓ − (2 j +1) ) − ( 2 ℓ +(2 j +1) ( p − 1 2 p − j ) p ) 2 p p j =0 Study the violet sums! Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  50. Introduction Spectrum of twisted Dirac operators Z p -manifolds Eta series of Z p -manifolds Spectral asymmetry of Dirac operators Eta invariants of Z p -manifolds Appendix: Number theoretical tools The untwisted case ℓ = 0 Epilogue Eta invariants η ℓ, h : integrality, parity Corollary (i) If ( p , a ) � = (3 , 1) then η ℓ, h ∈ Z Furthermore, η 0 , h is even, η ℓ, 1 is odd and η ℓ, 2 is even ( ℓ � = 0 ) (ii) If ( p , a ) = (3 , 1) then � − 2 / 3 ℓ = 0 η ℓ, 1 = η ℓ, 2 = 4 / 3 ℓ = 0 , 1 , 2 1 / 3 ℓ = 1 , 2 Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  51. Introduction Spectrum of twisted Dirac operators Z p -manifolds Eta series of Z p -manifolds Spectral asymmetry of Dirac operators Eta invariants of Z p -manifolds Appendix: Number theoretical tools The untwisted case ℓ = 0 Epilogue dim ker D ℓ It is known that dim ker D = multiplicity of the 0-eigenvalue = # independent harmonic spinors So, we will compute d ℓ, 0 , h = dim ker D ℓ, h Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  52. Introduction Spectrum of twisted Dirac operators Z p -manifolds Eta series of Z p -manifolds Spectral asymmetry of Dirac operators Eta invariants of Z p -manifolds Appendix: Number theoretical tools The untwisted case ℓ = 0 Epilogue dim ker D ℓ Proposition Let ( M , ε h ) be any Z p -manifold, 1 ≤ h ≤ 2 b + c . Then d ℓ, 0 ( ε h ) = 0 for h � = 1 and � �� )( a + b ) � b + c − 1 2 ( a + b ) q + ( − 1) ( p 2 − 1 d ℓ, 0 ( ε 1 ) = 2 2 p δ ℓ, 0 − 1 8 p In particular, if b + c > 1 then d ℓ, 0 , 1 is even for any 0 ≤ ℓ ≤ p − 1 while if b + c = 1 then d 0 , 0 , 1 is even and d ℓ, 0 , 1 is odd for ℓ � = 0 . Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  53. Introduction Spectrum of twisted Dirac operators Z p -manifolds Eta series of Z p -manifolds Spectral asymmetry of Dirac operators Eta invariants of Z p -manifolds Appendix: Number theoretical tools The untwisted case ℓ = 0 Epilogue dim ker D ℓ sketch of proof: We have p − 1 � 2 π ik ℓ d ℓ, 0 ( ε 1 ) = 1 χ Ln ( ε 1 ( γ k )) e p p k =0 and � k π � ε 1 ( γ k ) = ( − 1) k [ q +1 2 ]( a + b ) x a + b p , 2 k π p , . . . , qk π p Thus p − 1 2 ]( a + b ) � q �� a + b � � � jk π 2 π ik ℓ ( − 1) k [ q +1 d ℓ, 0 , 1 = 2 m cos e p p p k =0 j =1 Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  54. Introduction Spectrum of twisted Dirac operators Z p -manifolds Eta series of Z p -manifolds Spectral asymmetry of Dirac operators Eta invariants of Z p -manifolds Appendix: Number theoretical tools The untwisted case ℓ = 0 Epilogue The reduced eta invariant of Z p -manifolds η ℓ, h = 1 Recall that ¯ 2 ( η ℓ, h + d ℓ, 0 , h ) mod Z Studying the parities of η ℓ, h and d 0 ,ℓ, h we get our main result Theorem Let p be an odd prime and 0 ≤ ℓ ≤ p − 1 . Let M be a Z p -manifold with spin structure ε h , 1 ≤ h ≤ 2 b + c . Then � 2 mod Z p = n = 3 3 η ℓ, h = ¯ 0 mod Z otherwise Moreover, the relative eta invariants are ¯ η ℓ, h − ¯ η 0 , h = 0 Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  55. Introduction Spectrum of twisted Dirac operators Z p -manifolds Eta series of Z p -manifolds Spectral asymmetry of Dirac operators Eta invariants of Z p -manifolds Appendix: Number theoretical tools The untwisted case ℓ = 0 Epilogue The exception: the tricosm There is only one Z p -manifold with non-trivial reduced eta invariant The tricosm: the only 3-dimensional Z 3 -manifold M = M 3 , 1 Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  56. Introduction Spectrum of twisted Dirac operators Z p -manifolds Eta series of Z p -manifolds Spectral asymmetry of Dirac operators Eta invariants of Z p -manifolds Appendix: Number theoretical tools The untwisted case ℓ = 0 Epilogue Case ℓ = 0 • In the untwisted case ℓ = 0 we have a better insight • and there is a close relation with number theory We can put η ( s ) is in terms of the L -function ∞ ( n � p ) L ( s , χ p ) = n s n =1 η is in terms of class numbers h − p of imaginary quadratic fields Q ( √− p ) = Q ( i √ p ) Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  57. Introduction Spectrum of twisted Dirac operators Z p -manifolds Eta series of Z p -manifolds Spectral asymmetry of Dirac operators Eta invariants of Z p -manifolds Appendix: Number theoretical tools The untwisted case ℓ = 0 Epilogue Case ℓ = 0, eta series Theorem ([Miatello-P, PAMQ ‘08]) Let ( M , ε h ) be a Z p -manifold of dimension n. If M is exceptional and n ≡ p ≡ 3 (4) , a ≡ 1 (4) then a − 1 − 2 2 L ( s , χ p ) η 0 , 1 ( s ) = (2 π p ) s p 2 � p ) 2 s � a − 1 2 1 − ( 2 η 0 , 2 ( s ) = (2 π p ) s p L ( s , χ p ) In particular, � � p ) 2 s − 1 ( 2 η 0 , 2 ( s ) = η 0 , 1 ( s ) Otherwise we have η 0 , 1 ( s ) = η 0 , 2 ( s ) ≡ 0 Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  58. Introduction Spectrum of twisted Dirac operators Z p -manifolds Eta series of Z p -manifolds Spectral asymmetry of Dirac operators Eta invariants of Z p -manifolds Appendix: Number theoretical tools The untwisted case ℓ = 0 Epilogue Case ℓ = 0, eta invariants Theorem ([Miatello-P, PAMQ ‘08]) In the non-trivial case before, we have a − 3 a − 3 (i) If p = 3 then η 0 , 1 = − 2 · 3 and η ε 2 = 4 · 3 2 2 (ii) If p ≥ 7 then a − 1 2 h − p η 0 , 1 = − 2 p � � � 0 p ≡ 7 (8) ( 2 η 0 , 2 = p ) − 1 η ε 1 = a − 1 2 h − p 4 p p ≡ 3 (8) where h − p = the class number of Q ( √− p ) Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  59. Introduction Spectrum of twisted Dirac operators Z p -manifolds Eta series of Z p -manifolds Spectral asymmetry of Dirac operators Eta invariants of Z p -manifolds Appendix: Number theoretical tools The untwisted case ℓ = 0 Epilogue Case ℓ = 0, trigonometric expressions Proposition ([Miatello-P, PAMQ ‘08]) The eta invariants of an exceptional Z p -manifold ( M , ε h ) can be expressed in the following ways p − 1 p − 1 � � � k � a − 2 a − 2 cot( π k 2 cot( π k η 0 , 1 = − p p ) = − p p ) 2 2 p k =1 k =1 p − 1 � ( − 1) k � k � a − 1 csc( π k η 0 , 2 = p p ) 2 p k =1 Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  60. Introduction Z p -manifolds Trigonometric products Spectral asymmetry of Dirac operators Gauß sums Appendix: Number theoretical tools Sums of Legendre symbols Epilogue Legendre symbol Definition For p an odd prime, the Legendre symbol of k mod p is � if x 2 ≡ k ( p ) has a solution � k � 1 := if x 2 ≡ k ( p ) does not have a solution p − 1 if ( k , p ) = 1 and ( k p ) = 0 otherwise We have p 2 − 1 p − 1 ( 2 ( − 1 p ) = ( − 1) p ) = ( − 1) 8 2 Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  61. Introduction Z p -manifolds Trigonometric products Spectral asymmetry of Dirac operators Gauß sums Appendix: Number theoretical tools Sums of Legendre symbols Epilogue Trigonometric products Lemma Let p = 2 q + 1 be an odd prime, k ∈ N with ( k , p ) = 1 . Then q ) � � � p ) = ( − 1) ( k − 1)( p 2 − 1 2 − q √ p sin( jk π k ( i ) 8 p j =1 q � p ) = ( − 1) ( k − 1)( p 2 − 1 ) 2 − q cos( jk π ( ii ) 8 j =1 Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  62. Introduction Z p -manifolds Trigonometric products Spectral asymmetry of Dirac operators Gauß sums Appendix: Number theoretical tools Sums of Legendre symbols Epilogue Sketch of proof (i) use identities of Γ( z ) π sin( π z ) = Γ( z )Γ(1 − z ) d − 1 2 Γ( z ) = d z − 1 d ) · · · Γ( z +( d − 1) 2 Γ( z d )Γ( z +1 (2 π ) ) d Gauß Lemma ( p − 1) / 2 ) � � [ jk � p ] = ( − 1) ( k − 1)( p 2 − 1 k ( − 1) j =1 8 p (ii) follows from (i) Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  63. Introduction Z p -manifolds Trigonometric products Spectral asymmetry of Dirac operators Gauß sums Appendix: Number theoretical tools Sums of Legendre symbols Epilogue Classical character Gauß sums Definition For ℓ ∈ N 0 the character Gauß sum is p − 1 � � � 2 π i ℓ k k G ( ℓ, p ) := G ( χ p , ℓ ) = e p p k =0 We have � � √ p  ℓ  p ≡ 1 (4) p � � √ p G ( ℓ, p ) =  ℓ i p ≡ 3 (4) p Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  64. Introduction Z p -manifolds Trigonometric products Spectral asymmetry of Dirac operators Gauß sums Appendix: Number theoretical tools Sums of Legendre symbols Epilogue Modified character Gauß sums Definition For p ∈ P , ℓ ∈ N 0 , c ∈ N , 1 ≤ h ≤ 2, χ a character mod p we define p − 1 π ik (2 ℓ + δ h , 2 ) � ( − 1) k ( h +1) χ ( k ) e G χ p h ( ℓ ) := k =1 p − 1 � 2 π i ℓ k � π k (2 c + δ h , 2 ) � ( − 1) k ( h +1) χ ( k ) e F χ p h ( ℓ, c ) := sin p k =1 We want to compute G χ h ( ℓ ) and F χ h ( ℓ, c ) for χ = χ 0 = trivial character mod p χ = χ p = quadratic character mod p given by ( · p ) Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  65. Introduction Z p -manifolds Trigonometric products Spectral asymmetry of Dirac operators Gauß sums Appendix: Number theoretical tools Sums of Legendre symbols Epilogue The sums G χ h ( ℓ ) p − 1 � 2 ℓπ ik G χ 0 1 ( ℓ ) = e p k =1 p − 1 � (2 ℓ +1) π ik ( − 1) k e G χ 0 2 ( ℓ ) = p k =1 p − 1 � 2 ℓπ ik G χ p ( k 1 ( ℓ ) = p ) e p k =1 p − 1 � (2 ℓ +1) π ik G χ p ( − 1) k ( k 2 ( ℓ ) = p ) e p k =1 Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  66. Introduction Z p -manifolds Trigonometric products Spectral asymmetry of Dirac operators Gauß sums Appendix: Number theoretical tools Sums of Legendre symbols Epilogue The sums G χ 0 h ( ℓ ) Proposition We have � p − 1 p | ℓ χ 0 G 1 ( ℓ ) = − 1 p ∤ ℓ � p − 1 p | 2 ℓ + 1 χ 0 G 2 ( ℓ ) = − 1 p ∤ 2 ℓ + 1 In particular, χ 0 χ 0 G 1 ( ℓ ) ≡ G 2 ( ℓ ) ≡ p − 1 mod p Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  67. Introduction Z p -manifolds Trigonometric products Spectral asymmetry of Dirac operators Gauß sums Appendix: Number theoretical tools Sums of Legendre symbols Epilogue The sums G χ p h ( ℓ ) Proposition We have � √ p � G χ p ℓ 1 ( ℓ ) = δ ( p ) p � � � � √ p G χ p 2 2 ℓ +1 2 ( ℓ ) = δ ( p ) p p where � 1 p ≡ 1 (4) δ ( p ) := i p ≡ 3 (4) In particular, G χ p 1 ( ℓ ) = 0 if p | ℓ and G χ p 2 ( ℓ ) = 0 if p | 2 ℓ + 1 Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  68. Introduction Z p -manifolds Trigonometric products Spectral asymmetry of Dirac operators Gauß sums Appendix: Number theoretical tools Sums of Legendre symbols Epilogue The sums F χ h ( ℓ, c ) p − 1 � 2 ℓπ ik � 2 c π k � F χ 0 1 ( ℓ, c ) = e p sin p k =1 p − 1 � 2 ℓπ ik � (2 c +1) π k � ( − 1) k e F χ 0 2 ( ℓ, c ) = p sin p k =1 p − 1 � 2 ℓπ ik � 2 c π k � F χ p ( k 1 ( ℓ, c ) = p ) e p sin p k =1 p − 1 � 2 ℓπ ik � (2 c +1) π k � F χ p ( − 1) k ( k 2 ( ℓ, c ) = p ) e p sin p k =1 Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  69. Introduction Z p -manifolds Trigonometric products Spectral asymmetry of Dirac operators Gauß sums Appendix: Number theoretical tools Sums of Legendre symbols Epilogue The sums F χ 0 h ( ℓ, c ) Proposition We have χ 0 1 If p | ℓ then F h ( ℓ, c ) = 0 for h = 1 , 2 2 If p ∤ ℓ then � ± i p if p | ℓ ∓ c χ 0 2 F 1 ( ℓ, c ) = 0 otherwise � ± i p if p | 2( ℓ ∓ c ) ∓ 1 χ 0 2 F 2 ( ℓ, c ) = 0 otherwise Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  70. Introduction Z p -manifolds Trigonometric products Spectral asymmetry of Dirac operators Gauß sums Appendix: Number theoretical tools Sums of Legendre symbols Epilogue The sums F χ p h ( ℓ, c ) Proposition We have � √ p � F χ p ( ℓ − c p ) − ( ℓ + c 1 ( ℓ, c ) = i δ ( p ) p ) 2 � √ p � 2 �� F χ p ( 2( ℓ − c ) − 1 ) − ( 2( ℓ + c )+1 2 ( ℓ, c ) = i δ ( p ) ) p p p 2 In particular, if p | ℓ then � 0 p ≡ 1 (4) F χ p � c � √ p 1 ( ℓ, c ) = p ≡ 3 (4) p � 0 p ≡ 1 (4) F χ p � 2 �� 2 c +1 � √ p 2 ( ℓ, c ) = p ≡ 3 (4) p p Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  71. Introduction Z p -manifolds Trigonometric products Spectral asymmetry of Dirac operators Gauß sums Appendix: Number theoretical tools Sums of Legendre symbols Epilogue Sums involving Legendre symbols For 0 ≤ ℓ ≤ p − 1, we want to compute the sums Definition p − 1 �� ℓ − j �� � � � ℓ + j S 1 ( ℓ, p ) := − j p p j =1 p − 1 �� 2 ℓ − (2 j +1) �� � � � 2 ℓ +(2 j +1) S 2 ( ℓ, p ) := − j p p j =0 Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  72. Introduction Z p -manifolds Trigonometric products Spectral asymmetry of Dirac operators Gauß sums Appendix: Number theoretical tools Sums of Legendre symbols Epilogue Sums involving Legendre symbols Lemma p − 1 � � k ℓ ± j � � k ℓ � = − k ∈ Z p p j =1 p − 1 � � 2 ℓ ± (2 j +1) � = 0 p j =0 Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  73. Introduction Z p -manifolds Trigonometric products Spectral asymmetry of Dirac operators Gauß sums Appendix: Number theoretical tools Sums of Legendre symbols Epilogue Sums involving Legendre symbols Lemma p − 1 � ℓ + j � � j � p − 1 � j � � ℓ − 1 � � j = p + j p p p j =1 j =1 j =1 �� � p − 1 � ℓ − j � � − 1 p − ℓ − 1 � j � p − 1 � j � � � � j = p + j p p p p j =1 j =1 j =1 Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  74. Introduction Z p -manifolds Trigonometric products Spectral asymmetry of Dirac operators Gauß sums Appendix: Number theoretical tools Sums of Legendre symbols Epilogue Sums involving Legendre symbols Lemma � � 2 ℓ 2 ℓ − p − 1 p − 1 � 2 ℓ + j � � j � p − 1 � j � � � � p j = p + j p p p j =1 j =1 j =1 � � 2 ℓ �� p + p − 2 ℓ − 1 � p − 1 � 2 ℓ − j � � − 1 � j � p − 1 � j � � � � p j = p + j p p p p j =1 j =1 j =1 Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  75. Introduction Z p -manifolds Trigonometric products Spectral asymmetry of Dirac operators Gauß sums Appendix: Number theoretical tools Sums of Legendre symbols Epilogue Sums involving Legendre symbols Lemma p − 1 p − 1 p − 1 � � � � 2 ℓ ± (2 j +1) � � 2 ℓ ± j � � ℓ ± j � j − ( 2 j = p ) j p p p j =0 j =1 j =1 Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  76. Introduction Z p -manifolds Trigonometric products Spectral asymmetry of Dirac operators Gauß sums Appendix: Number theoretical tools Sums of Legendre symbols Epilogue Sums involving Legendre symbols Proposition  p S − 1 ( ℓ, p ) p ≡ 1 (4)   p − 1 S 1 ( ℓ, p ) = � − p S + ( j  1 ( ℓ, p ) − 2 p ) j p ≡ 3 (4)  j =1  � �  S − 2 ( ℓ, p ) − ( 2 p ) S − p 1 ( ℓ, p ) p ≡ 1 (4)     � �  S + p ) S + 2 ( ℓ, p ) − ( 2 − p 1 ( ℓ, p ) + S 2 ( ℓ, p ) =   � p − 1 � � � j �   ( 2  +2 p ) − 1 j p ≡ 3 (4)  p j =1 Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  77. Introduction Z p -manifolds Trigonometric products Spectral asymmetry of Dirac operators Gauß sums Appendix: Number theoretical tools Sums of Legendre symbols Epilogue Sums involving Legendre symbols where we have used the notations p − ℓ − 1 ℓ − 1 � � � j � � j � S ± 1 ( ℓ, p ) := ± p p j =1 j =1 � � � � 2 ℓ 2 ℓ p + p − 2 ℓ − 1 2 ℓ − p − 1 � � p p � j � � j � S ± 2 ( ℓ, p ) := ± p p j =1 j =1 Note that S ± 1 (0 , p ) = S ± 1 (0 , p ) = 0 since � � j � = 0 1 ≤ j ≤ p − 1 p Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  78. Introduction Z p -manifolds Trigonometric products Spectral asymmetry of Dirac operators Gauß sums Appendix: Number theoretical tools Sums of Legendre symbols Epilogue Sums involving Legendre symbols Dirichlet’s class number formula We recall � p − 1 � � j � − h − p p ≥ 5 , j = − 2 h − p 1 ω − p = p p − 2 / 3 p = 3 , j =0 where h − p = class number of Q ( √− p ) ⊂ Q ( ξ p ), ω − p = the number of p th -roots of unity of Q ( √− p ). In fact, and h − 3 = 1, ω − 3 = 6 and ω − p = 2 for p ≥ 5. Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  79. Introduction Z p -manifolds Trigonometric products Spectral asymmetry of Dirac operators Gauß sums Appendix: Number theoretical tools Sums of Legendre symbols Epilogue Sums involving Legendre symbols Corollary For p ≥ 5 , � 0 p ≡ 1 (4) S 1 (0 , p ) = − 2 h − p p ≡ 3 (4) � 0 p ≡ 1 (4) � � S 2 ( ℓ, p ) = ( 2 2 p ) − 1 h − p p ≡ 3 (4) Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  80. Introduction Z p -manifolds Bordism Spectral asymmetry of Dirac operators Final remarks Appendix: Number theoretical tools References Epilogue Bordism groups The integrality of η ℓ − η 0 implies Theorem Let ( M , ε, σ p ) and ( M , ε, σ 0 ) denote a Z p -manifold M equipped with a spin structure ε and with the natural and the trivial Z p -structures σ p : Z p → T Λ → M σ 0 : Z p → M × Z p → M Then [( M , ε, σ p )] − [( M , ε, σ 0 )] = 0 in the reduced equivariant spin bordism group � M Spin n ( B Z p ) Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  81. Introduction Z p -manifolds Bordism Spectral asymmetry of Dirac operators Final remarks Appendix: Number theoretical tools References Epilogue Summary of results We have 1 considered the “models” M b , c p , a ( a ) of Z p -manifolds 2 given an explicit description of the spin strucures of M b , c p , a ( a ) 3 explicitly computed, for twisted Dirac operators D ℓ acting on an arbitrary Z p -manifold ( M Γ , ε h ), the following the eta series η ℓ, h ( s ) the eta invariants η ℓ, h the number of independent harmonic spinors d ℓ, 0 , h the reduced eta invariants ¯ η ℓ, h = 0 (except for M 3 , 1 ) the relative eta invariants ¯ η ℓ, h − ¯ η 0 , h = 0 Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  82. Introduction Z p -manifolds Bordism Spectral asymmetry of Dirac operators Final remarks Appendix: Number theoretical tools References Epilogue Note on methodology ⋆ There are indirect methods to compute η -invariants (representation techniques, computing Ind ( D ) geo − Ind ( D ) top ) ⋆ However, we have performed the direct approach , that is, we have explicitly computed 1 the spectrum λ = ± 2 πµ , d λ = d ± ℓ,µ, h � d + ℓ,µ, h − d − 2 the eta series η ℓ ( s ) = 1 ℓ,µ, h (2 π ) s | µ | s µ � =0 3 the different eta invariants η ℓ = 1 η ℓ , ¯ 2 ( η ℓ + dim ker D ℓ ) mod Z , η ℓ − ¯ ¯ η 0 Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

  83. Introduction Z p -manifolds Bordism Spectral asymmetry of Dirac operators Final remarks Appendix: Number theoretical tools References Epilogue References R. Miatello - R. Podest´ a Spin structures and spectra of Z k 2 -manifolds , Mathematische Zeitschrift (MZ) 247 (319–335), 2004. The spectrum of twisted Dirac operators on compact flat manifolds , Trans. Amer. Math. Soc. (TAMS) 358 , 10 (4569–4603), 2006. Eta invariants and class numbers , Pure and Applied Mathematics Quarterly (PAMQ), 5 , 2 (1–26), 2009. Ricardo Podest´ a (Universidad Nacional de C´ ordoba, Argentina) Eta invariants of Z p -manifolds

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend