global in time shift of stability and mixing solutions
play

Global in time, shift of stability and mixing solutions for the - PowerPoint PPT Presentation

Global in time, shift of stability and mixing solutions for the Muskat problem. Diego Crdoba ICMat-CSIC (Madrid) Porquerolles September, 2018 The Muskat problem ( Muskat (1934), Saffman & Taylor (1958) ) In this talk: Scenario in R 2


  1. Global in time, shift of stability and mixing solutions for the Muskat problem. Diego Córdoba ICMat-CSIC (Madrid) Porquerolles September, 2018

  2. The Muskat problem ( Muskat (1934), Saffman & Taylor (1958) )

  3. In this talk: ◮ Scenario in R 2 ◮ Finite energy ◮ No surface tension ◮ µ 1 = µ 2 We consider: 1. Open curves vanishing at infinity α →∞ ( z ( α, t ) − ( α, 0 )) = 0 , lim 2. Periodic curves in the space variable z ( α + 2 k π, t ) = z ( α, t ) + 2 k π ( 1 , 0 ) . 3. Closed curves ⇒ Unstable regime.

  4. Recent Results ◮ Stability shifting: Stable to Unstable and back to Stable. with J. Gómez-Serrano and A. Zlatos. 2017 ◮ Mixing solutions. with A. Castro and D. Faraco. arXiv:1605.04822 ◮ Global existence with arbitrarily large slope. with O. Lazar. arXiv 2018

  5. Incompressible porous media equation in R 2 � ρ t + u · ∇ ρ = 0 Two-dimensional mass balance µ κ u = −∇ p − ( 0 , g ρ ) equation in porous media (2D IPM) div u = 0

  6. Incompressible porous media equation in R 2 � ρ t + u · ∇ ρ = 0 Two-dimensional mass balance µ κ u = −∇ p − ( 0 , g ρ ) equation in porous media (2D IPM) div u = 0 Remark: let µ = κ = g = 1 � | y | 4 , y 2 1 − y 2 1 R 2 ( − 2 y 1 y 2 | y | 4 ) ρ ( x − y ) dy − 1 ◮ u ( x ) = 2 π PV 2 ( 0 , ρ ( x )) , 2 ◮ || ρ || L p ( t ) = || ρ || L p ( 0 ) p ∈ [ 1 , ∞ ] = ⇒ || u || L p ( t ) ≤ C p ∈ ( 1 , ∞ ) ◮ ( ∂ t + u · ∇ ) ∇ ⊥ ρ = ( ∇ u ) ∇ ⊥ ρ.

  7. Muskat: Contour equation We consider � ρ 1 x ∈ Ω 1 ( t ) ρ ( x , t ) = ρ 2 x ∈ Ω 2 ( t ) with ∂ Ω j ( t ) = { z ( α, t ) = ( z 1 ( α, t ) , z 2 ( α, t )) : α ∈ R } .

  8. Muskat: Contour equation We consider � ρ 1 x ∈ Ω 1 ( t ) ρ ( x , t ) = ρ 2 x ∈ Ω 2 ( t ) with ∂ Ω j ( t ) = { z ( α, t ) = ( z 1 ( α, t ) , z 2 ( α, t )) : α ∈ R } . Darcy’s law: u = −∇ p − ( 0 , ρ ) ⇒ ∇ ⊥ · u = − ∂ x 1 ρ. ∇ ⊥ · u ( x , t ) = − ( ρ 2 − ρ 1 ) ∂ α z 2 ( α, t ) δ ( x − z ( α, t )) .

  9. Muskat: Contour equation We consider � ρ 1 x ∈ Ω 1 ( t ) ρ ( x , t ) = ρ 2 x ∈ Ω 2 ( t ) with ∂ Ω j ( t ) = { z ( α, t ) = ( z 1 ( α, t ) , z 2 ( α, t )) : α ∈ R } . Darcy’s law: u = −∇ p − ( 0 , ρ ) ⇒ ∇ ⊥ · u = − ∂ x 1 ρ. ∇ ⊥ · u ( x , t ) = − ( ρ 2 − ρ 1 ) ∂ α z 2 ( α, t ) δ ( x − z ( α, t )) . Biot-Savart: � u ( x , t ) = − ρ 2 − ρ 1 ( x − z ( β, t )) ⊥ PV | x − z ( β, t ) | 2 ∂ α z 2 ( β, t ) d β, 2 π R for x � = z ( α, t ) .

  10. Muskat: Contour equation We consider � ρ 1 x ∈ Ω 1 ( t ) ρ ( x , t ) = ρ 2 x ∈ Ω 2 ( t ) with ∂ Ω j ( t ) = { z ( α, t ) = ( z 1 ( α, t ) , z 2 ( α, t )) : α ∈ R } . Darcy’s law: u = −∇ p − ( 0 , ρ ) ⇒ ∇ ⊥ · u = − ∂ x 1 ρ. ∇ ⊥ · u ( x , t ) = − ( ρ 2 − ρ 1 ) ∂ α z 2 ( α, t ) δ ( x − z ( α, t )) . Biot-Savart: � u ( x , t ) = − ρ 2 − ρ 1 ( x − z ( β, t )) ⊥ PV | x − z ( β, t ) | 2 ∂ α z 2 ( β, t ) d β, 2 π R for x � = z ( α, t ) . � u � L 2 ( t ) < ∞ .

  11. Muskat: Contour equation Taking limits u j ( z ( α, t ) , t ) = − ( ρ 2 − ρ 1 ) BR ( z , ∂ α z 2 )( α, t ) ∂ α z 2 ( α, t ) ∓ 2 | ∂ α z ( α, t ) | 2 ∂ α z ( α, t ) , where � ( z ( α, t ) − z ( β, t )) ⊥ BR ( z , f )( α, t ) = 1 2 π PV | z ( α, t ) − z ( β, t ) | 2 f ( β, t ) d β. R

  12. Muskat: Contour equation It yields z t ( α, t ) = − ( ρ 2 − ρ 1 ) BR ( z , ∂ α z 2 )( α, t ) + c ( α, t ) ∂ α z ( α, t ) , for c parametrization freedom.

  13. Muskat: Contour equation It yields z t ( α, t ) = − ( ρ 2 − ρ 1 ) BR ( z , ∂ α z 2 )( α, t ) + c ( α, t ) ∂ α z ( α, t ) , for c parametrization freedom. � z t ( α ) = ρ 2 − ρ 1 z 1 ( α ) − z 1 ( β ) PV | z ( α ) − z ( β ) | 2 ( ∂ α z ( α ) − ∂ β z ( β )) d β. 2 π R ◮ SOLUTIONS OF THE MUSKAT PROBLEM = ⇒ WEAK SOLUTIONS OF IPM

  14. Contour equation as a graph ◮ The equation for a graph z ( α, t ) = ( α, f ( α, t )) . � α t = ρ 2 − ρ 1 ( α − β )( ∂ α α − ∂ β β ) ( α − β ) 2 + ( f ( α ) − f ( β )) 2 d β 2 π R ( 0 = 0 ) � f t ( α ) = ρ 2 − ρ 1 ( α − β )( ∂ α f ( α ) − ∂ β f ( β )) ( α − β ) 2 + ( f ( α ) − f ( β )) 2 d β 2 π R with initial data z 1 ( α, 0 ) = α z 2 ( α, 0 ) = f ( α, 0 ) = f 0 ( α ) .

  15. The linearized equation t ( α, t ) = − ρ 2 − ρ 1 Λ( f L )( α, t ) , Λ = ( − ∆) 1 / 2 . f L 2 Fourier transform: � � − ρ 2 − ρ 1 � f L ( ξ, t ) = � f 0 ( ξ, t ) exp | ξ | t . 2 ◮ ρ 2 > ρ 1 stable case, ◮ ρ 2 < ρ 1 unstable case.

  16. Local existence theory For a general interface ∂ Ω j ( t ) = { z ( α, t ) = ( z 1 ( α, t ) , z 2 ( α, t )) , α ∈ R } after taking k derivatives ( k ≥ 3 ) it can be shown that α z ( α, t ) = − ( ρ 2 − ρ 1 ) ∂ α z 1 ( α, t ) ∂ t ∂ k Λ ∂ k α z ( α, t ) + l.o.t. | ∂ α z ( α, t ) | 2 � �� � σ ( α, t ) ≡ R − T Thus we can distinguish three regimes: ◮ Stable regime: σ > 0 = ⇒ the denser fluid is always below. The Muskat problem is locally well-posed in time in Sobolev’s spaces. ◮ Fully unstable regime: σ < 0 = ⇒ the denser fluid is always above. The Muskat problem is ill-posed in Sobolev’s spaces. ◮ Partial unstable regime: σ has not a defined sign = ⇒ there is a part of the interface where the denser fluid is above.

  17. Energy estimates for the stable regime ρ 2 > ρ 1 For k = 3: � d dt || f || 2 σ ( α ) ∂ 3 α f ( α )Λ ∂ 3 H 3 = − α f ( α ) d α + Controlled Quantities Then, since σ > 0, yields � � � � 2 d α α f ( α ) ≤ − 1 σ ( α ) ∂ 3 α f ( α )Λ ∂ 3 ∂ 3 − σ ( α )Λ α f ( α ) 2 � � � 2 ≤ − 1 ∂ 3 Λ σ ( α ) α f ( α ) 2 Finally we obtain d dt || f || 2 H 3 ≤ C || f || m H 3

  18. Local existence results in the stable regime ◮ D.C. and F. Gancedo (2007). Local existence in H 3 (and ill-posedness for ρ 2 < ρ 1 ). ◮ A. Cheng, R. Granero and S. Shkoller (2016). Local existence in H 2 . ◮ P. Constantin, F. Gancedo, R. Shvydkoy and V. Vicol (2017). Local existence in W 2 , p for p>1. 3 2 + ǫ . ◮ B-V. Matioc (arxiv). Local existence in H

  19. Conserved quantities in the stable regime: ( z 1 , z 2 ) = ( α, f ( α, t )) � � ◮ f ( α, t ) d α = f 0 ( α ) d α.

  20. Conserved quantities in the stable regime: ( z 1 , z 2 ) = ( α, f ( α, t )) � � ◮ f ( α, t ) d α = f 0 ( α ) d α. ◮ Maximum principle for the L 2 − norm � � 2 � � f ( α ) − f ( β ) � T � � || f ( · , t ) || 2 d α d β = || f 0 || 2 L 2 ( R ) + log 1 + L 2 ( R ) α − β 0 R R

  21. Conserved quantities in the stable regime: ( z 1 , z 2 ) = ( α, f ( α, t )) � � ◮ f ( α, t ) d α = f 0 ( α ) d α. ◮ Maximum principle for the L 2 − norm � � 2 � � f ( α ) − f ( β ) � T � � || f ( · , t ) || 2 d α d β = || f 0 || 2 L 2 ( R ) + log 1 + L 2 ( R ) α − β 0 R R Compare with the linear case � T � � f ( α ) − f ( β ) � 2 dt = || f 0 || 2 || f ( · , t ) || L 2 ( R ) + d α d β L 2 ( R ) α − β 0 R � �� � 1 � 2 f ( · , t ) || 2 = R f ( x )Λ f ( x ) dx = || Λ L 2 ( R )

  22. Conserved quantities in the stable regime: ( z 1 , z 2 ) = ( α, f ( α, t )) � � ◮ f ( α, t ) d α = f 0 ( α ) d α. ◮ Maximum principle for the L 2 − norm � � 2 � � f ( α ) − f ( β ) � T � � || f ( · , t ) || 2 d α d β = || f 0 || 2 L 2 ( R ) + log 1 + L 2 ( R ) α − β 0 R R Compare with the linear case � T � � f ( α ) − f ( β ) � 2 dt = || f 0 || 2 || f ( · , t ) || L 2 ( R ) + d α d β L 2 ( R ) α − β 0 R � �� � 1 � 2 f ( · , t ) || 2 = R f ( x )Λ f ( x ) dx = || Λ L 2 ( R ) But � � 2 � � f ( α ) − f ( β ) � � 1 log 1 + d α d β ≤ C || f ( · , t ) || L 1 α − β 2 R R

  23. Conserved quantities in the stable regime: ( z 1 , z 2 ) = ( α, f ( α, t )) � � ◮ f ( α, t ) d α = f 0 ( α ) d α. ◮ Maximum principle for the L 2 − norm � � 2 � � f ( α ) − f ( β ) � T � � || f ( · , t ) || 2 d α d β = || f 0 || 2 L 2 ( R ) + log 1 + L 2 ( R ) α − β 0 R R ◮ Maximum principle: � f � L ∞ ( t ) ≤ � f � L ∞ ( 0 ) . Periodic case: � � � f − 1 f 0 d α � L ∞ ( t ) ≤ � f 0 − 1 f 0 d α � L ∞ e − Ct . 2 π 2 π T T Flat at infinity: � f � L ∞ ( t ) ≤ � f 0 � L ∞ 1 + Ct .

  24. Conserved quantities in the stable regime: ( z 1 , z 2 ) = ( α, f ( α, t )) � � ◮ f ( α, t ) d α = f 0 ( α ) d α. ◮ Maximum principle for the L 2 − norm � � 2 � � f ( α ) − f ( β ) � T � � || f ( · , t ) || 2 d α d β = || f 0 || 2 L 2 ( R ) + log 1 + L 2 ( R ) α − β 0 R R ◮ Maximum principle: � f � L ∞ ( t ) ≤ � f � L ∞ ( 0 ) . Periodic case: � � � f − 1 f 0 d α � L ∞ ( t ) ≤ � f 0 − 1 f 0 d α � L ∞ e − Ct . 2 π 2 π T T Flat at infinity: � f � L ∞ ( t ) ≤ � f 0 � L ∞ 1 + Ct . ◮ Maximum principle: If � f α � L ∞ ( 0 ) < 1 then � f α � L ∞ ( t ) ≤ � f α � L ∞ ( 0 ) .

  25. Global existence for || ∂ α f 0 || L ∞ ( R ) < 1

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend