the effect of early dark matter halos on reionization
play

The effect of early dark matter halos on reionization Aravind - PowerPoint PPT Presentation

The effect of early dark matter halos on reionization Aravind Natarajan and Dominik J. Schwarz arXiv: 0805.3945 [astro-ph] (2008) Aravind Natarajan (Universitt Bielefeld) Cosmo 08 Madison, Aug 25 08 Outline - 1. Dark matter in


  1. The effect of early dark matter halos on reionization Aravind Natarajan and Dominik J. Schwarz arXiv: 0805.3945 [astro-ph] (2008) Aravind Natarajan (Universität Bielefeld) Cosmo ’08 Madison, Aug 25 ’08

  2. Outline - 1. Dark matter in the Universe. Luminosity of halos. 2. Effect on the IGM. can they reionize the Universe? (Furlanetto et al. ’06; Mapelli et al. ’06; Ripamonti et al. ’07; Chuzhoy ’08) 3. Contribution to the optical depth. constraints on particle and halo parameters.

  3. Ordinary matter Dark Matter Dark Matter Non-thermal relic Thermal relic Hot Dark Energy Cold Warm Most of the matter in our galaxy is dark Dark matter searches : ADMX, DAMA, CDMS, Xenon, Edelweiss, Zeplin, EGRET, ......

  4. Particle annihilation in clumps - Probability of annihilation = � σ a v � n χ δ t � σ a v � n χ δ t 1 Number of pairs = 2 n χ δ V dN γ Energy released per ann. = � dE γ E γ dE γ � ρ 2 χ ( r ) dN γ dE γ = � σ a v � dL � dE γ E γ dV 2 m 2 χ

  5. Energy spectrum of photons - a = 0 . 9 dx = ae − bx dN γ b = 9 . 56 Let x = E γ /m χ x 1 . 5 (Bergström et al. ’98; Feng et al. ’01) dr r 2 ρ 2 ( r ) = ae − bx a e − bx dx = � σ a v � dL � L 0 4 π √ x √ x 2 m χ NFW ρ ( r ) = ρ s ( r/r s )(1+ r/r s ) 2 NFW like ρ ( r ) = ρ s ( r/r s ) α (1+ r/r s ) β Isothermal + core ρ s ρ ( r ) = ( r/r s ) 2 + K

  6. ρ ( r ) = ρ s ( r/r s )(1+ r/r s ) 2 ρ ( z f ) = 200 ρ c Ω m (1 + z f ) 3 ¯ = r 200 : 4 π r 3 ρ ( z f ) = M ( r 200 ) ¯ 200 3 c 200 = r 200 /r s � c 200 � M dm ( r 200 ) = 4 πρ s r 3 ln(1 + c 200 ) − s 1 + c 200 = f dm M = 4 π f dm = Ω dm / Ω m 3 r 3 200 f dm ¯ ρ ( z f ) c 3 ρ s = f dm ¯ ρ ( z f ) 200 3 ln(1 + c 200 ) − c 200 1+ c 200 L 0 = L 0 ( M, c 200 )

  7. = dE/dt n b = s + δ s s σ L = → t → d δ s − / − ′ s E → − d = L p ( s ) = n b ( s ) σδ s 4 π s 2 δ s � s n γ ( s ) = n γ ( s ′ ) × κ ( s ′ ; s ) κ ( s ′ ; s ) = exp � � − s ′ ds n ( s ) σ � �

  8. How many halos ? z = 50 10 14 z = 10 10 10 dM (Mpc − 3 ) 10 6 dN M 10 2 10 − 2 10 − 6 10 − 4 10 − 2 10 2 10 4 10 6 10 8 1 M ( M ⊙ )

  9. Num. ionizations per vol. per time at z = � � ) × c σ T n b 1 µ η [1 − x ion ( z )] √ Ω m √ 1+ z H 0 � � � � � � ∞ � z � 1 z F − dz ′ (1 + z ′ ) − 1 / 2 0 dx ae − bx σ ( x ) dN σ T κ ( z ′ ; z, x ) M min dM dM L 0 ( M ) √ x � µ = 0 . 76 13 . 6 eV + 0 . 06 1 1 x = E γ /m χ 0 . 82 0 . 82 24 . 6 eV � �

  10. Recombination: n max 1 � Φ ( T K ) ≈ n α H = 2 . 076 × 10 − 11 cm 3 s − 1 2 Φ ( T K ) √ T K � 1 . 58 × 10 5 n max = T K (L. Spitzer ’48; H.Zanstra ’54) He ≈ × α H ≈ 3 . 746 × 10 − 13 ( T/ eV) − 0 . 724 ing T ≈ 8 × 10 − 4 [(1 + z ) / 61] 2 eV, ionizing photon. The Helium recombination ] α He ≈ 3 . 925 × 10 − 13 ( T/ eV) − 0 . 6353 . � 0 . 76 � 0 . 82 α H + 0 . 06 R ( z ) = n 2 b x 2 ion (1 + z ) 6 0 . 82 α He

  11. I ( z ) − R ( z ) = n b (1 + z ) 3 dx ion dt dx ion � (1 + z ) 11 / 2 = − n b H 0 Ω m dz � σ a v � = 3 × 10 − 26 cm 3 s − 1 x depends on - ion 1. Particle mass - MeV range. 2. Minimum halo mass. 3. Halo concentration parameter.

  12. m dm M min c 200

  13. Optical depth � τ = ds n e ( s ) σ T • No Gunn-Peterson trough in the spectrum of quasars at z < 6. • H fully ionized at z = 6. • He doubly ionized at z = 3. • � He singly ionized at z = 6. τ ( z < 6) = 0 . 04 • But WMAP inferred τ = 0 . 087 !

  14. Conclusions: 1. Predicts a gradual reionization history. 2. H21 signal = 10’s of mK at z=15 (L. Chuzhoy ’08) 3. Places an upper limit on the DM mass. Soft gamma ray background (K. Ahn, E. Komatsu, ’05) Positron production (J.F. Beacom, N.F. Bell, G. Bertone, ’05) m χ ∼ 20 MeV May conflict with upper limit set by optical depth. 4. Pop. III star formation. 5. DM and stars. (Spolyar et al. ’08; Freese et al. ’08; Iocco et al. ’08; Fairbairn et al. ’08; Taoso et al. ’08; Natarajan et al. ’08)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend