the current evaluation of v and the role played by
play

The current evaluation of |V | and the role played by radiative - PowerPoint PPT Presentation

J.C. Hardy Cyclotron Institute Texas A&M University with I.S. Towner The current evaluation of |V | and the role played by radiative corrections ud CURRENT STATUS OF V ud .9700 .9800 .9750 nuclear 0 0 + + neutron nuclear


  1. J.C. Hardy Cyclotron Institute Texas A&M University with I.S. Towner The current evaluation of |V | and the role played by radiative corrections ud

  2. CURRENT STATUS OF V ud .9700 .9800 .9750 nuclear 0 0 + + neutron nuclear mirrors pion V ud V = 0.97420 + 0.00021 ud

  3. +   < > = Fermi matrix element V G = vector coupling constant 1/2 BR t ) , t = partial half-life: f ( Q EC ) f = statistical rate function: f (Z, V + G < > 2 2 K ft = BASIC WEAK-DECAY EQUATION BR Q EC t 1/2 0 ,1 + 0 ,1 + SUPERALLOWED 0 0 BETA DECAY EXPERIMENT

  4. +  V < > = Fermi matrix element  EXPERIMENT INCLUDING RADIATIVE AND ISOSPIN-SYMMETRY-BREAKING CORRECTIONS t = ft (1 + ) [ 1 - ( - ) ] =  1/2  R C NS K 2 2G (1 + ) V  R G = vector coupling constant BR + K SUPERALLOWED 0 0 BETA DECAY + 0 ,1 + 0 ,1 t 1/2 Q EC BR BASIC WEAK-DECAY EQUATION ft = 2 t 2 G < > V  f = statistical rate function: f (Z, ) Q EC t = partial half-life: f ( , ) ,

  5. + NS INCLUDING RADIATIVE AND ISOSPIN-SYMMETRY-BREAKING CORRECTIONS t = ft (1 + ) [ 1 - ( - ) ] =    R C K  2 2G (1 + ) V  R , ~1.5% f (Z, Q ) EC 0.3-1.5% f (nuclear structure) ~2.4% EXPERIMENT < > = Fermi matrix element + 2 SUPERALLOWED 0 0 BETA DECAY + 0 ,1 + 0 ,1 t 1/2 Q EC BR BASIC WEAK-DECAY EQUATION ft = K 2 G < > V V  f = statistical rate function: f (Z, ) Q EC t = partial half-life: f ( , ) t BR 1/2 G = vector coupling constant f (interaction)

  6. + 2 t = ft (1 + ) [ 1 - ( - ) ] =    R C NS K 2G (1 + EXPERIMENT ) V  R , ~1.5% f (Z, Q ) EC 0.3-1.5% f (nuclear structure) ~2.4% f (interaction) THEORETICAL UNCERTAINTIES INCLUDING RADIATIVE AND ISOSPIN-SYMMETRY-BREAKING CORRECTIONS  + 2 SUPERALLOWED 0 0 BETA DECAY + 0 ,1 + 0 ,1 t 1/2 Q EC BR BASIC WEAK-DECAY EQUATION ft = K 2 G < > < > = Fermi matrix element V  f = statistical rate function: f (Z, ) Q EC t = partial half-life: f ( , ) t BR 1/2 G = vector coupling constant V 0.05 – 0.10%

  7. CONTRIBUTION OF CORRECTION TERMS 20  NS Correction terms (%) +0.0 +0.5 +1.0 +1.5 +2.0 -0.5 +2.5 Z of daughter 35 30 25 15 t = 10 5 , R V 2G (1 +  ) 2 K NS C R ft (1 +  ) [ 1 - (  -  ) ] =  C

  8. CONTRIBUTION OF CORRECTION TERMS 25  NS ’  R Correction terms (%) +0.0 +0.5 +1.0 +1.5 +2.0 -0.5 +2.5 Z of daughter 35 30 20 t = 15 10 5 , R V 2G (1 +  ) 2 K NS C R ft (1 +  ) [ 1 - (  -  ) ] =  C

  9. CONTRIBUTION OF CORRECTION TERMS 30  NS ’  R  R Correction terms (%) +0.0 +0.5 +1.0 +1.5 +2.0 -0.5 +2.5 Z of daughter 35 25 t = 2 = ft (1 +  ) [ 1 - (  -  ) ] R C NS K 2G (1 +  ) 20 V R , 5 10 15  C

  10. FROM A SINGLE TRANSITION R R V determine G (1 +  ) 2 Experimentally , V t = ft (1 +  ) [ 1 - (  -  ) ] = 2G (1 +  ) 2 K NS C R THE PATH TO V ud

  11. FROM A SINGLE TRANSITION determine G (1 +  ) terms Validate the correction a Scalar current Test for presence of t values constant the Vector current (CVC) Test Conservation of FROM MANY TRANSITIONS R V 2 t = ft (1 +  ) [ 1 - (  -  ) ] = Experimentally , R V 2G (1 +  ) 2 K NS C R THE PATH TO V ud

  12. FROM A SINGLE TRANSITION  = WITH CVC VERIFIED 2 Obtain precise value of G (1 +  ) V R Determine V ud 2 2 2 V = G /G ud V 2 s FROM MANY TRANSITIONS Test Conservation of the Vector current (CVC) t values constant Test for presence of a Scalar current Validate the correction terms weak eigenstates mass eigenstates Cabibbo Kobayashi Maskawa (CKM) matrix b d t = ft (1 +  ) [ 1 - (  -  ) ] = R R C NS K 2 2G (1 +  ) V R , Experimentally 2 determine G (1 +  ) V V V V b' ud us ub V V V cd cs cb V V V td ts tb d' s' THE PATH TO V ud

  13. FROM A SINGLE TRANSITION 2 2 2 2 Determine V ud 2 2 ub ud us ud V + V + V = 1 Test CKM unitarity R V V = G /G V 2 terms Maskawa (CKM) matrix Cabibbo Kobayashi eigenstates mass eigenstates weak Validate the correction  a Scalar current Test for presence of t values constant the Vector current (CVC) Test Conservation of FROM MANY TRANSITIONS 2 Obtain precise value of G (1 +  ) WITH CVC VERIFIED t = ft (1 +  ) [ 1 - (  -  ) ] = R R V determine G (1 +  ) 2 Experimentally , V ud 2G (1 +  ) 2 K NS C R V V V us = tb b s d b' s' d' ts ub td V V V cb cs cd V V V THE PATH TO V ud

  14. FROM A SINGLE TRANSITION 2 V = G /G 2 2 2 Determine V ud 2 2 V ub us ud V + V + V = 1 Test CKM unitarity R ud  Obtain precise value of G (1 +  ) weak THE PATH TO V ud Maskawa (CKM) matrix Cabibbo Kobayashi eigenstates mass eigenstates terms t = ft (1 +  ) [ 1 - (  -  ) ] = Validate the correction a Scalar current Test for presence of t values constant the Vector current (CVC) Test Conservation of FROM MANY TRANSITIONS V 2 2 R R V determine G (1 +  ) 2 Experimentally , V us 2G (1 +  ) 2 K NS C R WITH CVC VERIFIED V V V ud ub tb = b s d b' s' d' ts td V V V cb cs cd V V V R O I R P D F E I I F E S L I B T I A S S S O S N P O Y L I T N I D O N O C

  15. 74 Rb 8 cases with ft -values measured C NS K 2 2G (1 +  ) V R , to ft (1 +  ) [ 1 - (  -  ) ] ; 6 more cases <0.05% precision with . 0.05-0.3% precision ~220 individual measurements with compatible precision Hardy & Towner PRC 91, 025501 (2015) R = NUMBER OF PROTONS, Z 10 20 30 40 10 NUMBER OF NEUTRONS, N 20 30 40 50 60 0 ,1 t = 0 ,1 + + BR t 1/2 Q EC 10 C WORLD DATA FOR 0 0 DECAY, 2017 + + updated to 2017

  16. 74 Rb with compatible precision 3090 ft updated to 2017 PRC 91, 025501 (2015) Hardy & Towner ~220 individual measurements 3050 0.05-0.3% precision . with <0.05% precision ; 6 more cases to 3040 3060 , 46 V 62 Ga 34 Ar 22 Mg 74 Rb 54 Co 50 Mn 42 Sc 3070 38m K 34 Cl 26m Al 14 O 10 C 3080 8 cases with ft -values measured R NUMBER OF PROTONS, Z 40 + 0 ,1 0 ,1 10 60 50 30 BR 20 NUMBER OF NEUTRONS, N 10 40 30 20 + t 1/2 V ft (1 +  ) [ 1 - (  -  ) ] 2G (1 +  ) 2 K NS C R = Q EC t = 3030 + + WORLD DATA FOR 0 0 DECAY, 2017 10 C 38 Ca

  17. 74 Rb with PRC 91, 025501 (2015) Hardy & Towner with compatible precision ~220 individual measurements 0.05-0.3% precision . <0.05% precision ft ; 6 more cases to 8 cases with ft -values measured , R V 2G (1 +  ) updated to 2017 3090 K 42 Sc 62 Ga 34 Ar 22 Mg 74 Rb 54 Co 50 Mn 46 V 38m K 3040 34 Cl 26m Al 14 O 10 C 3080 3070 3060 3050 2 NS NUMBER OF PROTONS, Z 50 BR + + 0 ,1 0 ,1 10 60 40 Q EC 30 20 NUMBER OF NEUTRONS, N 10 40 30 20 t 1/2 10 C C 3090 R [ 1 - (  -  ) ] ft (1 +  ) = t = ’ R ft (1+  ) 3080 WORLD DATA FOR 0 0 DECAY, 2017 3130 3120 3110 3100 3140 3030 + + 38 Ca

  18. 74 Rb , with compatible precision ~220 individual measurements 0.05-0.3% precision . with <0.05% precision ; 6 more cases to 8 cases with ft -values measured R Hardy & Towner V 2G (1 +  ) 2 K NS C R ft (1 +  ) [ 1 - (  -  ) ] = PRC 91, 025501 (2015) ’ 34 Cl 62 Ga 34 Ar 22 Mg 74 Rb 54 Co 50 Mn 46 V 42 Sc 38m K 26m Al updated to 2017 14 O 10 C 3080 3070 3060 3050 3040 3090 ft t = R NUMBER OF PROTONS, Z 10 WORLD DATA FOR 0 0 DECAY, 2017 10 C Q EC t 1/2 BR + + 0 ,1 0 ,1 60 + 50 40 30 20 NUMBER OF NEUTRONS, N 10 40 30 20 + Z of daughter ft (1+  ) 3030 3090 3080 3130 3120 3110 3100 3100 3090 3140 3060 5 3080 3070 t 35 10 15 20 25 30 38 Ca

  19. 74 Rb ; 6 more cases PRC 91, 025501 (2015) Hardy & Towner with compatible precision ~220 individual measurements 0.05-0.3% precision . with <0.05% precision to ft 8 cases with ft -values measured , R V 2G (1 +  ) 2 K NS C R updated to 2017 3090 = 50 Mn values consistent Critical test passed: 38 Ca 62 Ga 34 Ar 22 Mg 74 Rb 54 Co 46 V 3040 42 Sc 38m K 34 Cl 26m Al 14 O 10 C 3080 3070 3060 3050 ft (1 +  ) [ 1 - (  -  ) ] t = NUMBER OF PROTONS, Z 0 ,1 + WORLD DATA FOR 0 0 DECAY, 2017 10 C Q EC t 1/2 BR + + 0 ,1 10 Z of daughter 60 50 40 30 20 NUMBER OF NEUTRONS, N 10 40 30 20 + 5 ’ 3090 R ft (1+  ) 3090 3080 3130 3120 3110 3100 3100 3140 30 3030 3060 3080 3070 t 35 10 15 20 25 t

  20. 1. Radiative corrections 2   R C NS K 2 2G (1 + ) V  R ,  R m 3   2   2  N N W  e +  One-photon brem. + low-energy  W -box High-energy  W -box + ZW -box  -  Z  NS  R Born A p p + ... ] photonic contributions = [4 ln(m /m ) + ln(m /m ) + 2C      Order-  axial-vector 2. Isospin symmetry-breaking corrections ) [ 1 - ( structure ft (1 + ) ] = t = CALCULATED CORRECTIONS TO 0 0 DECAYS + + on nuclear Dependent } (members of the same isospin triplet). parent and daughter analog states Charge-dependent mismatch between  C universal , = [g(E ) +  +  + ... ]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend