the characteristic function for infinite jacobi matrices
play

The characteristic function for infinite Jacobi matrices, its - PowerPoint PPT Presentation

The characteristic function for infinite Jacobi matrices, its logarithm, the spectral zeta function, and solvable examples Frantiek tampach 1 , Pavel tov cek 2 1 Department of Applied Mathematics, Faculty of Information Technology


  1. The characteristic function for infinite Jacobi matrices, its logarithm, the spectral zeta function, and solvable examples František Štampach 1 , Pavel Št’ovíˇ cek 2 1 Department of Applied Mathematics, Faculty of Information Technology Czech Technical University in Prague, Czech Republic B frantisek.stampach@fit.cvut.cz 2 Department of Mathematics, Faculty of Nuclear Science Czech Technical University in Prague, Czech Republic B stovicek@kmlinux.fjfi.cvut.cz 3rd Najman Conference ON SPECTRAL PROBLEMS FOR OPERATORS AND MATRICES Biograd, Croatia September 16-20, 2013

  2. The function F ( x ) Define F : D → C , ∞ ∞ ∞ ∞ 1 + � ( − 1 ) m � � � F ( x ) = . . . m = 1 k 1 = 1 k 2 = k 1 + 2 k m = k m − 1 + 2 × x k 1 x k 1 + 1 x k 2 x k 2 + 1 . . . x k m x k m + 1 where � ∞ � { x k } ∞ � D = k = 1 ⊂ C ; | x k x k + 1 | < ∞ k = 1 ℓ 2 ( N ) ⊂ D Note that Put F ( x 1 , x 2 , . . . , x n ) = F ( x 1 , x 2 , . . . , x n , 0 , 0 , 0 , . . . ) , F ( ∅ ) = 1 One has � ∞ � ∞ � � � � | F ( x ) | ≤ exp , | F ( x ) − 1 | ≤ exp − 1 | x k x k + 1 | | x k x k + 1 | k = 1 k = 1 František Štampach, Pavel Št’ovíˇ cek The characteristic function for infinite Jacobi matrices ... 2/30

  3. Basic properties of F ( x ) A recurrence rule F ( { x n } ∞ n = 1 ) = F ( { x n + 1 } ∞ n = 1 ) − x 1 x 2 F ( { x n + 2 } ∞ n = 1 ) more generally, for any k ∈ N , F ( { x n } ∞ F ( x 1 , . . . , x k ) F ( { x k + n } ∞ n = 1 ) = n = 1 ) − F ( x 1 , . . . , x k − 1 ) x k x k + 1 F ( { x k + n + 1 } ∞ n = 1 ) For x ∈ D , F ( x ) = lim n →∞ F ( x 1 , x 2 , . . . , x n ) The function F is continuous on ℓ 2 ( N ) František Štampach, Pavel Št’ovíˇ cek The characteristic function for infinite Jacobi matrices ... 3/30

  4. F ( x ) and special functions The Bessel functions of the first kind: for w , ν ∈ C , ν / ∈ − N , � ∞ w ν �� w � J ν ( 2 w ) = Γ( ν + 1 ) F ν + k k = 1 The basic hypergeometric series (q-hypergeometric series): for t , w ∈ C , | t | < 1, ∞ t m ( 2 m − 1 ) w 2 m � ∞ �� t k − 1 w � � 1 + ( − 1 ) m F = ( 1 − t 2 )( 1 − t 4 ) . . . ( 1 − t 2 m ) k = 1 m = 1 0 φ 1 (; 0 ; t 2 , − t w 2 ) = Here k − 1 ∞ q k ( k − 1 ) z k , ( a ; q ) k = � 1 − aq j � � � 0 φ 1 (; b ; q , z ) = ( q ; q ) k ( b ; q ) k k = 0 j = 0 František Štampach, Pavel Št’ovíˇ cek The characteristic function for infinite Jacobi matrices ... 4/30

  5. A class of Jacobi matrices: a convergence condition Consider a symmetric (in general complex) Jacobi (tridiagonal) matrix   λ 1 w 1 w 1 λ 2 w 2   J =   w 2 λ 3 w 3   ... ... ...   where λ = { λ n } ∞ and w = { w n } ∞ n = 1 ⊂ C \ { 0 } n = 1 ⊂ C Denote der ( λ ) := the set of all finite accumulation points of λ C λ 0 := C \ { λ n ; n ∈ N } The convergence condition ∞ w 2 � � � n for some and hence any z ∈ C λ � � � < ∞ 0 � � ( λ n − z )( λ n + 1 − z ) � n = 1 w 2 Then � ∞ ( λ n − z )( λ n + 1 − z ) converges locally uniformly on C λ n n = 1 0 František Štampach, Pavel Št’ovíˇ cek The characteristic function for infinite Jacobi matrices ... 5/30

  6. The characteristic polynomial of a finite Jacobi matrix One has F ( x 1 , x 2 , . . . , x n ) = det X n where 1   x 1 1 x 2 x 2   ... ... ...       X n = ... ... ...        1  x n − 1 x n − 1   1 x n γ 2 k − 1 := � k − 1 w 2 j � k − 1 w 2 j + 1 Put w 2 j , k = 1 , 2 , 3 , . . . w 2 j − 1 , γ 2 k := w 1 j = 1 j = 1 Then γ k γ k + 1 = w k Let J n be the n × n truncation of the Jacobi matrix. Then � n � � γ 2 γ 2 � γ 2 � 1 2 det ( J n − zI n ) = n ( λ k − z ) F λ 1 − z , λ 2 − z , . . . , λ n − z k = 1 František Štampach, Pavel Št’ovíˇ cek The characteristic function for infinite Jacobi matrices ... 6/30

  7. The characteristic function of J Put �� � ∞ � γ 2 n F J ( z ) := F λ n − z n = 1 and for z / ∈ C \ der ( λ ) , ∞ � r ( z ) := δ z ,λ k k = 1 (the number of occurrences of z in λ ; r ( z ) = 0 for z / ∈ { λ n ; n ∈ N } ) Lemma Suppose J fulfills the convergence condition. Then F J ( z ) is a well defined analytic function on C \ { λ n ; n ∈ N } , meromorphic on C \ der ( λ ) with poles at the points λ n , n ∈ N , (not belonging to der ( λ ) , however) of order at most r ( λ n ) . František Štampach, Pavel Št’ovíˇ cek The characteristic function for infinite Jacobi matrices ... 7/30

  8. The zero set of the characteristic function of J Define the zero set � � z ∈ C \ der ( λ ); lim u → z ( u − z ) r ( z ) F J ( u ) = 0 Z ( J ) := and the functions ξ k ( z ) , k = 0 , 1 , 2 , ..., on C \ der ( λ ) ( w 0 = 1),     γ 2 � ∞ k � w j − 1 j � ξ k ( z ) := lim u → z ( u − z ) r ( z )  F    u − λ j λ j − u j = 1 j = k + 1 � � = F − 1 Remarks . (i) Notice that ( 0 ) Z ( J ) ∩ C \ { λ n ; n ∈ N } J (ii) z ∈ Z ( J ) iff ξ 0 ( z ) = 0 (iii) For k sufficiently large, − 1   γ 2 � ∞ k � k � � j � � ξ k ( z ) = w j − 1 ( z − λ j ) F   λ j − z j = 1 j = 1 j = k + 1 λ j � = z František Štampach, Pavel Št’ovíˇ cek The characteristic function for infinite Jacobi matrices ... 8/30

  9. The spectrum of J in C \ der ( λ ) Theorem Suppose the convergence condition on J is fulfilled and F J ( z ) does not vanish identically on C \ { λ n ; n ∈ N } . Then J determines unambiguously a closed operator in ℓ 2 ( N ) (denoted again by J), spec ( J ) \ der ( λ ) = spec p ( J ) \ der ( λ ) = Z ( J ) The point spectrum of J is simple. If z ∈ Z ( J ) , i.e. ξ 0 ( z ) = 0 , then ξ ( z ) = ( ξ 1 ( z ) , ξ 2 ( z ) , ξ 3 ( z ) , . . . ) is a corresponding eigenvector. František Štampach, Pavel Št’ovíˇ cek The characteristic function for infinite Jacobi matrices ... 9/30

  10. The case J is real Corollary Suppose J is is real and fulfills the convergence condition. Then J determines unambiguously a self-adjoint operator in ℓ 2 ( N ) and spec ( J ) ∩ ( C \ der ( λ )) = Z ( J ) consists of simple real eigenvalues which have no accumulation points in R \ der ( λ ) . František Štampach, Pavel Št’ovíˇ cek The characteristic function for infinite Jacobi matrices ... 10/30

  11. Example 1 J. Gard, E. Zakrajšek: J. Inst. Math. Appl. 11 (1973) Y. Ikebe, Y. Kikuchi, I. Fujishiro: J. Comput. Appl. Math. 38 (1991) λ n = n and w n = w > 0 for all n ∈ N , 1   w 2 w w   J =  3  w w   ... ... ...   One has der ( λ ) = ∅ , spec ( J ) = Z ( J ) , and for r ∈ Z + , � γ 2 � ∞ � � = w − r + z Γ( 1 + r − z ) J r − z ( 2 w ) n F n − z n = r + 1 Hence spec ( J ) = { z ∈ C ; J − z ( 2 w ) = 0 } Corresponding eigenvectors v ( z ) can be chosen as v k ( z ) = ( − 1 ) k J k − z ( 2 w ) , k ∈ N František Štampach, Pavel Št’ovíˇ cek The characteristic function for infinite Jacobi matrices ... 11/30

  12. Example 2 λ n = 1 / n , w n = β/ � n ( n + 1 ) , for β > 0 and all n ∈ N , √ 1 2   β/ √ √ 2 1 / 2 6 β/ β/   √ √ J =   6 1 / 3 12 β/ β/    ... ... ...  Then, for r ∈ Z + , r − 1 / z �� γ 2 � ∞ � r + 1 − 1 � 2 β � z � � � � n F = Γ J r − 1 / z λ n − z β z z n = r + 1 and � 2 β � � � z ∈ R \ { 0 } ; J − 1 / z = 0 ∪ { 0 } spec ( J ) = z Corresponding eigenvectors v ( z ) can be chose as √ � 2 β � v k ( z ) = k J k − 1 / z , k ∈ N z František Štampach, Pavel Št’ovíˇ cek The characteristic function for infinite Jacobi matrices ... 12/30

  13. Example 3 λ n = q n − 1 w n = β q ( n − 1 ) / 2 , with and 0 < q < 1, β > 0, 1   β β √ q β q   β √ q J = q 2   β q   ... ... ...   Then, for r ∈ Z + , �� � ∞ � γ 2 z ; q , − q r β 2 ; q r � � n = 0 φ 1 F z 2 λ n − z n = r + 1 and so z ; q , − β 2 � 1 ; 1 � � � � � z ∈ R \ { 0 } ; = 0 ∪ { 0 } spec ( J ) = z ; q ∞ 0 φ 1 z 2 A corresponding eigenvector v ( z ) can be written in the form k − 1 � q k z ; q , − q k β 2 ; q k � β � � � � v k ( z ) = q ( k − 1 )( k − 2 ) / 4 z ; q ∞ 0 φ 1 , k ∈ N z 2 z František Štampach, Pavel Št’ovíˇ cek The characteristic function for infinite Jacobi matrices ... 13/30

  14. Example 4 A modification of Example 3 → an unbounded Jacobi operator λ n = q − n + 1 and w n = β q − ( n − 1 ) / 2 where again 0 < q < 1, β > 0 1   β q − 1 β q − 1 / 2 β   J =  β q − 1 / 2 q − 2 β q − 1    ... ... ...   Then, for r ∈ Z + , � ∞ �� γ 2 � = 0 φ 1 (; q r z ; q , − q r + 1 β 2 ) n F λ n − z n = r + 1 and so � � z ∈ R ; ( z ; q ) ∞ 0 φ 1 (; z ; q , − q β 2 ) = 0 spec ( J ) = The k th entry of a corresponding eigenvector v ( z ) v k ( z ) = q k ( k + 1 ) / 4 ( − β ) k − 1 ( q k z ; q ) ∞ 0 φ 1 (; q k z ; q , − q k + 1 β 2 ) , k ∈ N František Štampach, Pavel Št’ovíˇ cek The characteristic function for infinite Jacobi matrices ... 14/30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend