the behaviour of bentonite based materials insight into
play

The behaviour of bentonite based materials: insight into nano and - PowerPoint PPT Presentation

THEBES: KYT project investigating bentonite 1 st THEBES workshop, Aalto University 11 th December 2015 The behaviour of bentonite based materials: insight into nano and micro-structure Pierre Delage Ecole Nationale des Ponts et Chausses, Paris


  1. THEBES: KYT project investigating bentonite 1 st THEBES workshop, Aalto University 11 th December 2015 The behaviour of bentonite based materials: insight into nano and micro-structure Pierre Delage Ecole Nationale des Ponts et Chaussées, Paris Laboratoire Navier/CERMES

  2. Outline of the presentation • Bentonite materials in nuclear waste disposals • Microstructure issues in compacted bentonites and sand bentonite mixtures: • Hydration of compacted bentonites • Nanostructure issues during hydration • Consequences on water retention • Consequences on water transfer • Consequences on technological voids • Conclusions 2

  3. Outline of the presentation • Bentonite materials in nuclear waste disposals • Microstructure issues in compacted bentonites and sand bentonite mixtures: • Hydration of compacted bentonites • Nanostructure issues during hydration • Consequences on water retention • Consequences on water transfer • Consequences on technological voids • Conclusions 3

  4. Role of the disposal • To impede water circulation – Canister – Engineered barrier – Geological barrier – Structure of the disposal • To immobilise radionuclides into the canisters • To delay and attenuate the migration of radionuclides (> 500 000 y.) Multibarrier concept including engineered barrier and host rock 4 ANDRA 2005

  5. Multi-barrier system (vertical deposit) 5 SKB

  6. SKB concept 6 SKB, Posiva

  7. Swiss concept High Level Waste Intermediate Level Waste Opalinus clay Compacted bentonite 7

  8. Deep geological disposal: French concept Saturation ANDRA 2005 (EDZ)

  9. COx Claystone Ø Stable geological context (155 Ma) Ø Very low permeability: 10 -20 10 -21 m 2 Ø Good ability for radionuclides retention Ø Porosity : 14 – 19% Ø Clay fraction: 48-50% at 490 m Photo ANDRA

  10. Blocks of compacted bentonite Closed after 9 years hydration Technological voids 10 FEBEX project (1996), Grimsel URL FEBEX project (2005)

  11. Pellets 11 Posiva

  12. NAGRA Concept Bentonite pellets Bentonite blocks 12 Nagra

  13. HE-E experiment (Nagra) 13

  14. Outline of the presentation • Bentonite materials in nuclear waste disposals • Microstructure issues in compacted bentonites and sand bentonite mixtures: 14

  15. Some typical characteristics of bentonites Clay FoCa7 clay (F) Kunigel (J) MX 80 (US) Mineralogy Kaolinite- smectite 64% Na smectite 85% Na - Ca smectite w L (%) 112 474 520 w P (%) 50 27 62 I P 62 447 458 ρ s 2.67 Mg/m 3 2.79 Mg/m 3 2.65 Mg/m 3 Activity 0.78 6.9 5.4 Specific surface 300 m 2 /g 687 m 2 /g 700 m 2 /g Cation Exchange 54 mEq/100 g 73,2 mEq/100 g 68 mEq/100 g Capacity 15 Tessier et al. (1998), Komine & Ogata (1992), Pusch (1992)

  16. SEM Photo, Compacted Kunigel clay 5 µ m Inter-aggregates DRY pores Clay aggregates ρ = 2 Mg/m 3 w = 8% s = 57 MPa 2 µ m 16 Cui et al. (2002) Cui, Loiseau and Delage 2002

  17. Sand (35%) - MX80 (65%) mixture 100 Percentage passing (%) 80 Deflocculated bentonite Sand 60 Bentonite grains Sand grains 40 Bentonite grains 20 Deflocculated bentonite (hydrometer) 0 0.0001 0.001 0.01 0.1 1 10 17 Grain size (mm) Saba, Delage et al. Eng. Geol 2014

  18. Mercury intrusion pore size distribution Laplace’s law : increasing Hg pressure 1 1 ⎛ ⎞ p cos ⎜ ⎟ = θ + ⎜ ⎟ r r ⎝ ⎠ 200 MPa 1 2 0.00 0.4 Cylindrical pore : r 1 = r 2 0.01 0.1 1 10 100 ⎛ 1 ⎞ p 2 cos ⎜ ⎟ = θ 0.3 ⎜ ⎟ r ⎝ ⎠ Hg penetrating 1 Porosity 0.2 Higher Hg (non wetting) 0.1 pressure penetrates b smaller pores 0.0 0.01 0.1 1 10 100 Entrance pore diameter (µm) 3.5 nm in smaller and smaller pores

  19. Mercury intrusion pore size distribution 0.15 Sand-bentonite compacted powder 0.10 dV/d(logD) ρ d = 1.8 Mg/m 3 , w = 10%, S r = 55%, s = 75.5 MPa 0.05 a 0.00 0.4 0.01 0.1 1 10 100 Not intruded < 3.5 nm 0.3 s = 75.5 MPa Porosity 0.2 0.1 b 0.0 19 0.01 0.1 1 10 100 Saba, Delage et al. Eng. Geol 2014 Entrance pore diameter (µm)

  20. 2- Microstructure at initial state Pore size distribution curve Platelet Grain Sand-bentonite compacted powder Macropores ρ d = 1.8 Mg/m 3 , w = 10%, S r = 55%, s = 75.5 MPa Micropores 0.14 0.12 0.1 dV/d(logD) 0.08 0.06 0.04 0.02 0 0.001 0.01 0.1 1 10 100 1000 0.019 µ m 22 µ m Entrance pore diameter D (µm) Micropores: intra-granular Macropores: inter-grains Simona SABA - PhD 20 /48 Defense – 9 Dec 2013 Saba, Delage et al. Eng. Geol 2014

  21. Microfocus X-Ray Computed Tomography ( µ CT) Imager/Detector X-Ray Source Sample Rotation disk Translation rails 21 http://navier.enpc.fr Saba, Delage et al. Eng. Geol 2014

  22. 2- Microstructure at initial state Sand-bentonite compacted powder 30 µ m voxel size 65% MX80 bentonite, 35% sand, ρ d = 1.8 Mg/m 3 , s = 76 MPa, S r = 55% 50 mm 4 mm 10 mm Simona SABA - PhD 22 /48 Defense – 9 Dec 2013 Saba, Delage et al. Eng. Geol 2014

  23. 2- Microstructure at initial state Horizontal µ CT cross section Aggregation of bentonite grains Sand Well defined bentonite grains 50 mm Pore Bentonite Simona SABA - PhD 23 /48 Defense – 9 Dec 2013 Saba, Delage et al. Eng. Geol 2014

  24. 2- Microstructure at initial state Image analysis (ImageJ) 3D Median filter (2x2x2 vox) ▌ Segmentation Linear Linear Logarithmic Logarithmic 73 73 Image histogram Segmented Threshold image 73 « Mixture Modelling» function Simona SABA - PhD 24 /48 Defense – 9 Dec 2013 Saba, Delage et al. Eng. Geol 2014

  25. 2- Microstructure at initial state Heterogeneity in porosity 0.07 5 0.06 0.05 Porosity (> 30 µ m) Pores > 30 µ m (voxel size) 0.04 0.03 4 3 0.02 2 1 0.01 Mean value = 0.016 0.00 0.3 0 5 10 15 20 25 30 0.25 Distance fron centre (mm) Cumulative porosity 0.2 0.15 0.1 0.05 0.026 0 Simona SABA - PhD 25 /48 0.001 0.01 0.1 1 10 100 1000 Defense – 9 Dec 2013 30 µ m Entrance pore diameter D (µm) Saba, Delage et al. Eng. Geol 2014

  26. Outline of the presentation • Bentonite materials in nuclear waste disposals • Microstructure issues in compacted bentonites and sand bentonite mixtures: • Hydration of compacted bentonites 26

  27. Sand-bentonite mixture PSD 0.15 0.10 dV/d(logD) 0.05 a 0.00 0.4 0.01 0.1 1 10 100 Not intruded < 3.5 nm 0.3 s = 75.5 MPa Porosity 0.2 0.1 b 0.0 27 0.01 0.1 1 10 100 Entrance pore diameter (µm)

  28. Effect of water content 1.1 e = 1.008 1.0 w = 12.5%, s = 30 MPa 0.9 Intruded mercury void ratio, e m 0.812 0.8 MX 80 clay w = 28.5% ρ = 2 Mg/m 3 0.7 w = 12.5 % s = 2 MPa 0.597 0.6 0.5 0.4 w = 28.5 % 0.293 0.3 0.2 0.230 0.1 0.0 0.001 0.01 0.1 1 10 Porous radius ( µ m) Delage et al., Géot. 2006 SAMPLE AT HIGHER WATER CONTENT AND LOWER SUCTION HAS MORE WATER LOCATED IN VERY SMALL PORES (< 35 nm)

  29. As compacted Calcigel Total pore volume ρ d = 2 Mg/m 3 , w = 9%, s = 22.7 MPa Agus and Schanz, 2005

  30. Oven drying, Calcigel clay OVEN-DRYING (s from 22 MPa to 1GPa) HAS LITTLE EFFECT ON MICROSTRUCTURE AND NANOPORES Oven-dried,w = 0%, s = 1 GPa Agus and Schanz, 2005

  31. Hydration – swelling, Calcigel clay Hydrated and swollen w = 19%, s = 0 MPa SWELLING CONCERNS BOTH NANO PORES (< 3.5 nm) AND LARGE PORES (around 1 µ m) Agus and Schanz, 2005

  32. Outline of the presentation • High level nuclear waste disposals • Microstructure issues in compacted bentonites and sand bentonite mixtures: • Hydration of compacted bentonites • Nanostructure issues during hydration 32

  33. Saturated intra-aggregates swelling mechanisms Saiyouri, Hicher & Tessier (2000), using Pons et al. (1981) • X ray scattering at low angles • Probabilistic analysis Interlayer distances as a function of decreased suction

  34. Water adsorption along smectites ����� �������������� � � ���� 4 layers : 20.6 Š���������������� ������������������ Sayiouri, Hicher & Tessier (2000)

  35. Adsorption of water vs suction, MX 80 �� �������� ������������������� �������� �� 18.6 Š�������� 15.6 Š������� 12.6 Š�� 7 MPa 50 MPa � ����� ���� ��� � �� ��� ���� ������������ inside the ��� saturated aggregates Sayiouri, Hicher & Tessier (2000)

  36. Hydration from a dry state inside the saturated aggregates possible double layer high suction (> 50 MPa) low suction (< 7 MPa) 100 layers 10 layers Sayiouri, Hicher & Tessier (2000)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend