the asia pacifjc analysis and pde seminar new sharp
play

The Asia-Pacifjc Analysis and PDE Seminar New Sharp Inequalities in - PowerPoint PPT Presentation

New Sharp . . . . . . . . . . . . . . . . . . . . . . The Asia-Pacifjc Analysis and PDE Seminar New Sharp Inequalities in Analysis and Geometry Changfeng Gui University of Texas at San Antonio Based on a joint paper with


  1. D n e u S 1 ud u 2 D n e u S 1 ud L 2 D u 2 D n e u S 1 ud L 2 D 1 1 n Then Defjne Theorem New Sharp Toeplitz Determinants and the Szego Limit . . . . . . Inequalities in . 2 n is nondecreasing and 1 0 n 4 1 2 1 n n In particular, 4 1 2 1 1 . . . . Inequality . . . . . . . . New Inequality Determinants Logrithemic Covering . Sphere Inequality Aubin-Onofri Determinants Toeplitz Inequality and Lebedev-Milin Gui Changfeng Geometry Analysis and . . . . . . . . . . . . . . . . . . . . . Given f ( θ ) ∈ L 1 ( S 1 ) . Let ∫ S 1 e ik θ f ( θ ) d θ, k = 0 , ± 1 , ± 2 , · · · , c k = 1 2 π and T ( p , q ) = c p − q , p , q ∈ Z be the Toeplitz matrix, and T n ( p , q ) = c p − q , 0 ≤ p , q ≤ n be the n-th Toeplitz matrix. D n ( f ) = det ( T n ) .

  2. u 2 D n e u S 1 ud L 2 D New Sharp Inequalities in . . . . . . . . . . . . . . . . . . Toeplitz Determinants and the Szego Limit Theorem Defjne In particular, n 1 1 2 1 4 n 0 . . . Aubin-Onofri . Logrithemic Inequality Covering Sphere Inequality Determinants New Inequality Toeplitz Inequality and Lebedev-Milin Gui Changfeng Geometry Analysis and Determinants . . . . . . . . . . . . . . . . . . . Given f ( θ ) ∈ L 1 ( S 1 ) . Let ∫ S 1 e ik θ f ( θ ) d θ, k = 0 , ± 1 , ± 2 , · · · , c k = 1 2 π and T ( p , q ) = c p − q , p , q ∈ Z be the Toeplitz matrix, and T n ( p , q ) = c p − q , 0 ≤ p , q ≤ n be the n-th Toeplitz matrix. D n ( f ) = det ( T n ) . ∫ Then ln D n ( e u ) − ( n + 1 ) 1 S 1 ud θ is nondecreasing and 2 π ∫ lim n →∞ { ln D n ( e u ) − ( n + 1 ) 1 S 1 ud θ } = 1 4 π ||∇ u || 2 L 2 ( D ) . 2 π

  3. New Sharp . . . . . . . . . . . Inequalities in . . . . . . . . . . . . . Toeplitz Determinants and the Szego Limit Theorem Defjne In particular, . . . Inequality Analysis and Geometry . Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering . Logrithemic . New Inequality . . . . . . . . . . . Determinants Given f ( θ ) ∈ L 1 ( S 1 ) . Let ∫ S 1 e ik θ f ( θ ) d θ, k = 0 , ± 1 , ± 2 , · · · , c k = 1 2 π and T ( p , q ) = c p − q , p , q ∈ Z be the Toeplitz matrix, and T n ( p , q ) = c p − q , 0 ≤ p , q ≤ n be the n-th Toeplitz matrix. D n ( f ) = det ( T n ) . ∫ Then ln D n ( e u ) − ( n + 1 ) 1 S 1 ud θ is nondecreasing and 2 π ∫ lim n →∞ { ln D n ( e u ) − ( n + 1 ) 1 S 1 ud θ } = 1 4 π ||∇ u || 2 L 2 ( D ) . 2 π ∫ ln D n ( e u ) − ( n + 1 ) 1 S 1 ud θ ≤ 1 4 π ||∇ u || 2 L 2 ( D ) , n ≥ 0 . 2 π

  4. S 1 e u e i d u 2 S 1 e u d S 1 ud L 2 D S 1 e u e i d u 2 S 1 e u d S 1 ud L 2 D 2 1 1, the second inequality in the Szego limit theorem is When n Lebedev-Milin Inequality. New Sharp We have The fjrst two inequalities in the Szego limit theorem 2 . . . . . Inequalities in . . 1 1 1 (3) 8 1 2 1 2 direct consequence of above inequality we have 2 0, as a One notes that in the special case when (2) 4 1 . 2 . . . Inequality . . . . . . . . New Inequality Determinants Logrithemic Covering . Sphere Inequality Aubin-Onofri Determinants Toeplitz Inequality and Lebedev-Milin Gui Changfeng Geometry Analysis and . . . . . . . . . . . . . . Question: Any similar inequalities in higher dimensions? . . . . . . ∫ ∫ S 1 e u d θ ) 2 − ( 1 S 1 e u e i θ d θ ) 2 . D 1 ( e u ) = ( 1 2 π 2 π The fjrst inequality when n = 0 of Szego limit theorem is the

  5. S 1 e u e i d u 2 S 1 e u d S 1 ud L 2 D Inequalities in . . . . . New Sharp . . . . . . . . . We have . The fjrst two inequalities in the Szego limit theorem . Lebedev-Milin Inequality. (2) One notes that in the special case when 0, as a direct consequence of above inequality we have 1 2 1 2 1 8 (3) . . . Aubin-Onofri New Inequality Determinants Logrithemic Inequality Covering Sphere Inequality Determinants . Toeplitz Inequality and Lebedev-Milin Gui Changfeng Geometry Analysis and . Question: Any similar inequalities in higher dimensions? . . . . . . . . . . . . . . . . . . . ∫ ∫ S 1 e u d θ ) 2 − ( 1 S 1 e u e i θ d θ ) 2 . D 1 ( e u ) = ( 1 2 π 2 π The fjrst inequality when n = 0 of Szego limit theorem is the When n = 1, the second inequality in the Szego limit theorem is ∫ ∫ ∫ S 1 e u e i θ d θ | 2 ) − 1 log( | 1 S 1 e u d θ | 2 −| 1 S 1 ud θ ≤ 1 4 π ||∇ u || 2 L 2 ( D ) . 2 π 2 π π

  6. New Sharp Inequalities in . . . . . . . . . . . . . . . . . . . . . . The fjrst two inequalities in the Szego limit theorem We have Lebedev-Milin Inequality. (2) One notes that in the special case when direct consequence of above inequality we have (3) . . . Logrithemic Analysis and Geometry Changfeng Gui Lebedev-Milin . Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality Question: Any similar inequalities in higher dimensions? Determinants . . . . . . . . . . . . . . New Inequality ∫ ∫ S 1 e u d θ ) 2 − ( 1 S 1 e u e i θ d θ ) 2 . D 1 ( e u ) = ( 1 2 π 2 π The fjrst inequality when n = 0 of Szego limit theorem is the When n = 1, the second inequality in the Szego limit theorem is ∫ ∫ ∫ S 1 e u e i θ d θ | 2 ) − 1 log( | 1 S 1 e u d θ | 2 −| 1 S 1 ud θ ≤ 1 4 π ||∇ u || 2 L 2 ( D ) . 2 π 2 π π S 1 e u e i θ d θ = 0, as a ∫ ∫ ∫ log( 1 S 1 e u d θ ) − 1 S 1 ud θ ≤ 1 8 π ||∇ u || 2 L 2 ( D ) . 2 π 2 π

  7. New Sharp Inequalities in . . . . . . . . . . . . . . . . . . . . . . The fjrst two inequalities in the Szego limit theorem We have Lebedev-Milin Inequality. (2) One notes that in the special case when direct consequence of above inequality we have (3) . . . Logrithemic Analysis and Geometry Changfeng Gui Lebedev-Milin . Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality Question: Any similar inequalities in higher dimensions? Determinants . . . . . . . . . . . . . . New Inequality ∫ ∫ S 1 e u d θ ) 2 − ( 1 S 1 e u e i θ d θ ) 2 . D 1 ( e u ) = ( 1 2 π 2 π The fjrst inequality when n = 0 of Szego limit theorem is the When n = 1, the second inequality in the Szego limit theorem is ∫ ∫ ∫ S 1 e u e i θ d θ | 2 ) − 1 log( | 1 S 1 e u d θ | 2 −| 1 S 1 ud θ ≤ 1 4 π ||∇ u || 2 L 2 ( D ) . 2 π 2 π π S 1 e u e i θ d θ = 0, as a ∫ ∫ ∫ log( 1 S 1 e u d θ ) − 1 S 1 ud θ ≤ 1 8 π ||∇ u || 2 L 2 ( D ) . 2 π 2 π

  8. New Sharp . . . . . . . . . . . . . . . . . . . . . . . . Outline 1 Lebedev-Milin Inequality and Toeplitz Determinants 2 Aubin-Onofri Inequality 3 Sphere Covering Inequality 4 Logrithemic Determinants . . Inequalities in Logrithemic Analysis and Geometry Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality Determinants . New Inequality . . . . . . . . . . . . . 5 New Inequality

  9. New Sharp . . . Inequalities in . . . . . . . . . . . . . . . . . . . . . Trudinger-Moser Inequality (1967, 1971) 4 so that . . . Logrithemic Analysis and Geometry Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri . Sphere Covering Inequality Inequality Determinants . . . . . . . . . . . New Inequality . Let S 2 be the unit sphere and for u ∈ H 1 ( S 2 ) . J α ( u ) = α ∫ ∫ ∫ S 2 |∇ u | 2 d ω + S 2 ud ω − log S 2 e u d ω ≥ C > −∞ , if and only if α ≥ 1, where the volume form d ω is normalized ∫ S 2 d ω = 1.

  10. H 1 S 2 S 2 e u x i New Sharp . . . . . . . . . . . . . . . . . u i 0 u u for C J Inequalities in 2 , 1 Aubin observed that for Aubin’s Result (1979) and Onofri Inequality (1982) . . . . . Determinants Logrithemic Inequality Covering Sphere Inequality Aubin-Onofri Toeplitz . Inequality and Lebedev-Milin Gui Changfeng Geometry Analysis and Determinants New Inequality . . . . . . . . . . . . . . . . . 1 2 3 Onofri showed for α ≥ 1 J α ( u ) ≥ 0 ;

  11. New Sharp . Inequalities in . . . . . . . . . . . . . . . . . . . . . . . Aubin’s Result (1979) and Onofri Inequality (1982) 2 , for . . . Logrithemic Analysis and Geometry Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality . Covering Inequality Sphere Determinants . . . New Inequality . . . . . . . . . Onofri showed for α ≥ 1 J α ( u ) ≥ 0 ; Aubin observed that for α ≥ 1 J α ( u ) ≥ C > −∞ ∫ u ∈ M := { u ∈ H 1 ( S 2 ) : S 2 e u x i = 0 , i = 1 , 2 , 3 } ,

  12. S 2 e u d New Sharp . 1 Conjecture A. For They proposed the following conjecture. again is equal to zero. Chang and Yang Conjecture (1987) . . . u . . . . . . . . 2 , u J i i 0 i and (4) on S 2 i x i e u 1 3 Inequalities in i 1 e u u 2 the Euler-Lagrange equations Indeed, they showed that the minimizer u exists and satisfjes 0 . . . Inequality . . New Inequality Determinants Logrithemic Inequality Covering Sphere Aubin-Onofri . Determinants Toeplitz Inequality and Lebedev-Milin Gui Changfeng Geometry Analysis and . . . . . . . . . . . . . . . . . . . . . . 1 2 3 Chang and Yang showed that for α close to 1 the best constant

  13. S 2 e u d New Sharp . Chang and Yang Conjecture (1987) . . . . . . They proposed the following conjecture. . . . . . . . . again is equal to zero. 2 , . 1 i 0 i and (4) on S 2 i x i e u i Indeed, they showed that the minimizer u exists and satisfjes 3 i 1 e u u 2 the Euler-Lagrange equations Inequalities in . . Inequality . New Inequality Determinants Logrithemic Inequality Covering Sphere Aubin-Onofri . Determinants Toeplitz Inequality and Lebedev-Milin Gui Changfeng Geometry Analysis and . . 1 2 3 . . . . . . . . . . . . . . . . . . Chang and Yang showed that for α close to 1 the best constant Conjecture A. For α ≥ 1 inf u ∈M J α ( u ) = 0 .

  14. New Sharp . . . . . . . . . . Inequalities in . . . . . . . the Euler-Lagrange equations i 0 i and (4) e u Indeed, they showed that the minimizer u exists and satisfjes . 2 , They proposed the following conjecture. again is equal to zero. Chang and Yang Conjecture (1987) . . . . . Determinants Logrithemic Inequality Covering . Inequality Aubin-Onofri Toeplitz New Inequality Inequality and Lebedev-Milin Gui Changfeng Geometry Analysis and Determinants Sphere . . . . . . . . . . 1 2 3 . . . . . . Chang and Yang showed that for α close to 1 the best constant Conjecture A. For α ≥ 1 inf u ∈M J α ( u ) = 0 . i = 3 α ∑ S 2 e u d ω − 1 = 2 ∆ u + µ i x i e u , on S 2 . ∫ i = 1

  15. New Sharp . . . . . Inequalities in . . . . . . . . . . . . . . . . Chang and Yang Conjecture (1987) again is equal to zero. They proposed the following conjecture. 2 , Indeed, they showed that the minimizer u exists and satisfjes the Euler-Lagrange equations e u (4) and . . . Determinants Analysis and Geometry Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants . Inequality Sphere Covering Inequality Logrithemic Aubin-Onofri New Inequality . . . . . . . . . . . . . . . Chang and Yang showed that for α close to 1 the best constant Conjecture A. For α ≥ 1 inf u ∈M J α ( u ) = 0 . i = 3 α ∑ S 2 e u d ω − 1 = 2 ∆ u + µ i x i e u , on S 2 . ∫ i = 1 µ i = 0 , i = 1 , 2 , 3 .

  16. New Sharp . . . Inequalities in . . . . . . . . . . . . . . . . . . . . Chang and Yang Conjecture (1987) again is equal to zero. They proposed the following conjecture. 2 , Indeed, they showed that the minimizer u exists and satisfjes e u . . . Logrithemic Analysis and Geometry Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality . Covering Inequality Sphere Determinants . . . . New Inequality . . . . . . . (5) . . Chang and Yang showed that for α close to 1 the best constant Conjecture A. For α ≥ 1 inf u ∈M J α ( u ) = 0 . α S 2 e u d ω − 1 = 0 , 2 ∆ u + on S 2 . ∫

  17. x 2 g x e 2 g x dx New Sharp . . . . . . . . it holds for . . . . . . Inequalities in Axially symmetric functions 2 1 2, 2 25 16 Feldman, Froese, Ghoussoub and G. (1998) 0 1 1 1 . g x dx 1 1 2 dx 1 1 1 . . . Sphere . . . New Inequality Determinants Logrithemic Inequality Covering Inequality . Aubin-Onofri Determinants Toeplitz Inequality and Lebedev-Milin Gui Changfeng Geometry Analysis and . G. and Wei, and independently Lin (2000) . . . . . . . . . . . . . . . . . For every function g on ( − 1 , 1 ) satisfying ∥ g ∥ 2 = − 1 ( 1 − x 2 ) | g ′ ( x ) | 2 dx < ∞ and ∫ 1 ∫ 1 e 2 g ( x ) xdx = 0 , − 1

  18. New Sharp . . . . . . . Inequalities in . . . . . . . . . . . . . . . . Axially symmetric functions 2 2 Feldman, Froese, Ghoussoub and G. (1998) 16 25 . . . Logrithemic Analysis and Geometry Changfeng Gui Lebedev-Milin . Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality Inequality and Determinants . . . . . . New Inequality G. and Wei, and independently Lin (2000) . . . . . . . For every function g on ( − 1 , 1 ) satisfying ∥ g ∥ 2 = − 1 ( 1 − x 2 ) | g ′ ( x ) | 2 dx < ∞ and ∫ 1 ∫ 1 e 2 g ( x ) xdx = 0 , − 1 it holds for α ≥ 1 / 2, α ∫ 1 ∫ 1 ∫ 1 ( 1 − x 2 ) | g ′ ( x ) | 2 dx + e 2 g ( x ) dx ≥ 0 , g ( x ) dx − log 1 − 1 − 1 − 1

  19. New Sharp . . . . . . . . Inequalities in . . . . . . . . . . . . . . . . Axially symmetric functions 2 2 Feldman, Froese, Ghoussoub and G. (1998) . . . Logrithemic Analysis and Geometry Changfeng Gui . Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality Lebedev-Milin Determinants . . . . New Inequality . G. and Wei, and independently Lin (2000) . . . . . . . For every function g on ( − 1 , 1 ) satisfying ∥ g ∥ 2 = − 1 ( 1 − x 2 ) | g ′ ( x ) | 2 dx < ∞ and ∫ 1 ∫ 1 e 2 g ( x ) xdx = 0 , − 1 it holds for α ≥ 1 / 2, α ∫ 1 ∫ 1 ∫ 1 ( 1 − x 2 ) | g ′ ( x ) | 2 dx + e 2 g ( x ) dx ≥ 0 , g ( x ) dx − log 1 − 1 − 1 − 1 α > 16 25 − ϵ

  20. New Sharp . . . . . . . . Inequalities in . . . . . . . . . . . . . . . . Axially symmetric functions 2 2 Feldman, Froese, Ghoussoub and G. (1998) . . . Logrithemic Analysis and Geometry Changfeng Gui . Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality Lebedev-Milin Determinants . . . . New Inequality . G. and Wei, and independently Lin (2000) . . . . . . . For every function g on ( − 1 , 1 ) satisfying ∥ g ∥ 2 = − 1 ( 1 − x 2 ) | g ′ ( x ) | 2 dx < ∞ and ∫ 1 ∫ 1 e 2 g ( x ) xdx = 0 , − 1 it holds for α ≥ 1 / 2, α ∫ 1 ∫ 1 ∫ 1 ( 1 − x 2 ) | g ′ ( x ) | 2 dx + e 2 g ( x ) dx ≥ 0 , g ( x ) dx − log 1 − 1 − 1 − 1 α > 16 25 − ϵ

  21. New Sharp . . . . . . . . . . . . . . . . . . . . . . . . . Earlier Result for general functions: Ghoussoub and Lin (2010): Conjecture A holds for . . Inequalities in . Analysis and Geometry Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality Logrithemic Determinants New Inequality . . . . . . . . . . . . α ≥ 2 3 − ϵ

  22. New Sharp . . . . . . . . . . . . . . . . . . . . . . . . . Strategies of Proof For axially symmetric functions, to show (3) has only solution For general functions, to show solutions to (3) are axially . . Inequalities in . Analysis and Geometry Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality Logrithemic Determinants New Inequality . . . . . . . . . . . . symmetric. u ≡ C .

  23. New Sharp . . . . . . . . . . . . . . . . . . . . . . . . . Strategies of Proof For axially symmetric functions, to show (3) has only solution For general functions, to show solutions to (3) are axially . . Inequalities in . Analysis and Geometry Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality Logrithemic Determinants New Inequality . . . . . . . . . . . . symmetric. u ≡ C .

  24. New Sharp . . . . . . . . . . . . . . . . . . . . . . . . . . Sterographic Projection . . Inequalities in Inequality Analysis and Geometry Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Logrithemic . Determinants New Inequality . . . . . . . . . . . Figure: Sterographic Projection

  25. 1 y y 2 y 2 2 1 e v y 2 2 1 e v dy R 2 1 New Sharp . x 1 . . . . . . Suppose u is a solution of (3) and let . . . Inequalities in . . x 2 2 v 1 8 1 and (7) 2 0 in 1 u v then v satisfjes (6) 8 1 . . . . Covering . . . . . . New Inequality Determinants Logrithemic Inequality Sphere . Inequality Aubin-Onofri Determinants Toeplitz Inequality and Lebedev-Milin Gui Changfeng Geometry Analysis and . (8) . . . . . . . . . . . . . . . . Equations on R 2 Let Π be the stereographic projection S 2 → R 2 with respect to the north pole N = ( 1 , 0 , 0 ) : ( ) Π := , . 1 − x 3 1 − x 3

  26. y 2 2 1 e v y 2 2 1 e v dy R 2 1 New Sharp . . . . . . . . . . Inequalities in . . . . x 2 . x 1 . Suppose u is a solution of (3) and let (6) then v satisfjes v 1 1 0 in 2 (7) and 1 8 . . . Inequality . . New Inequality Determinants Logrithemic Inequality Covering Sphere Aubin-Onofri . Determinants Toeplitz Inequality and Lebedev-Milin Gui Changfeng Geometry Analysis and . (8) . . . . . . . . . . . . . . . . . Equations on R 2 Let Π be the stereographic projection S 2 → R 2 with respect to the north pole N = ( 1 , 0 , 0 ) : ( ) Π := , . 1 − x 3 1 − x 3 v = u (Π − 1 ( y )) − 2 α ln( 1 + | y | 2 ) + ln( 8 α ) ,

  27. New Sharp . . . . . . . Inequalities in . . . . . . . . . . . . . . . x 1 x 2 Suppose u is a solution of (3) and let (6) then v satisfjes (7) and . . . Logrithemic Analysis and Geometry Changfeng Gui Lebedev-Milin Inequality and Toeplitz . Determinants Aubin-Onofri Inequality Sphere Covering Inequality (8) Determinants . . . . . . . . New Inequality . . . . . . Equations on R 2 Let Π be the stereographic projection S 2 → R 2 with respect to the north pole N = ( 1 , 0 , 0 ) : ( ) Π := , . 1 − x 3 1 − x 3 v = u (Π − 1 ( y )) − 2 α ln( 1 + | y | 2 ) + ln( 8 α ) , α − 1 ) e v = 0 in R 2 , ∆ v + ( 1 + | y | 2 ) 2 ( 1 α − 1 ) e v dy = 8 π ∫ R 2 ( 1 + | y | 2 ) 2 ( 1 α .

  28. New Sharp . . . . . . . . . . . . . . . . . . 0: Chen and Li (1991) l 0 0: Chanillo and Kiessling (1994) l 2 For For l . Are solutions to (9) and (10) radially symmetric? (10) and (9) Consider in general the equation General Equations . Inequalities in . . Determinants Logrithemic Inequality Covering Sphere Inequality Aubin-Onofri Toeplitz . Inequality and Lebedev-Milin Gui Changfeng Geometry Analysis and Determinants New Inequality . . . . . . . . . . . . . . . . . 1: Ghoussoub and Lin (2010) ∆ v + ( 1 + | y | 2 ) l e v = 0 in R 2 , ∫ R 2 ( 1 + | y | 2 ) l e v dy = 2 π ( 2 l + 4 ) .

  29. New Sharp . . . . . . . . . . . . . . . . . . 0: Chen and Li (1991) l 0 0: Chanillo and Kiessling (1994) l 2 For For l . Are solutions to (9) and (10) radially symmetric? (10) and (9) Consider in general the equation General Equations . Inequalities in . . Determinants Logrithemic Inequality Covering Sphere Inequality Aubin-Onofri Toeplitz . Inequality and Lebedev-Milin Gui Changfeng Geometry Analysis and Determinants New Inequality . . . . . . . . . . . . . . . . . 1: Ghoussoub and Lin (2010) ∆ v + ( 1 + | y | 2 ) l e v = 0 in R 2 , ∫ R 2 ( 1 + | y | 2 ) l e v dy = 2 π ( 2 l + 4 ) .

  30. New Sharp . . . . . . . . . . . . . . . . . . Are solutions to (9) and (10) radially symmetric? l 0 0: Chanillo and Kiessling (1994) l 2 For (10) . and (9) Consider in general the equation General Equations . . Inequalities in . . Determinants Logrithemic Inequality Covering Sphere Inequality Aubin-Onofri Toeplitz New Inequality Inequality and Lebedev-Milin Gui Changfeng Geometry Analysis and . Determinants . . . . . . . . . 1: Ghoussoub and Lin (2010) . . . . . . . ∆ v + ( 1 + | y | 2 ) l e v = 0 in R 2 , ∫ R 2 ( 1 + | y | 2 ) l e v dy = 2 π ( 2 l + 4 ) . For l = 0: Chen and Li (1991)

  31. New Sharp . Inequalities in . . . . . . . . . . . . . . . . . . . . . General Equations Consider in general the equation (9) and (10) Are solutions to (9) and (10) radially symmetric? 0 l . . . Determinants Analysis and Geometry Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering . Logrithemic Inequality New Inequality . . . . . . . . . . . . . . 1: Ghoussoub and Lin (2010) ∆ v + ( 1 + | y | 2 ) l e v = 0 in R 2 , ∫ R 2 ( 1 + | y | 2 ) l e v dy = 2 π ( 2 l + 4 ) . For l = 0: Chen and Li (1991) For − 2 < l < 0: Chanillo and Kiessling (1994)

  32. New Sharp . Inequalities in . . . . . . . . . . . . . . . . . . . . . . General Equations Consider in general the equation (9) and (10) Are solutions to (9) and (10) radially symmetric? . . . Logrithemic Analysis and Geometry Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering . Inequality Determinants . . . . . New Inequality . . . . . . . . ∆ v + ( 1 + | y | 2 ) l e v = 0 in R 2 , ∫ R 2 ( 1 + | y | 2 ) l e v dy = 2 π ( 2 l + 4 ) . For l = 0: Chen and Li (1991) For − 2 < l < 0: Chanillo and Kiessling (1994) 0 < l ≤ 1: Ghoussoub and Lin (2010)

  33. New Sharp . . . . . . . . . . . . . . . . . . Inequalities in 2 distinct radial 2, solutions to (9) and (10) must l Conjecture B. For 0 structure becomes.) (The bigger the l is, the more complicated the solution solutions, which implies the existence of non radial solutions. 2 Existence of Non Radial Solutions 2, there are at least 2 k 1 k k l 2 and Dolbeault, Esteban, Tarantello (2009): For all k non radial solution. . . . Aubin-Onofri Determinants Logrithemic Inequality Covering Sphere Inequality Determinants . Toeplitz Inequality and Lebedev-Milin Gui Changfeng Geometry Analysis and New Inequality . . . . . . . . . . . . . . . . . . be radially symmetric. Lin (2000): For 2 < l ̸ = ( k − 1 )( k + 2 ) , where k ≥ 2 there is a

  34. New Sharp . . . . . . . . . . . . . . . . . . . . . . . Existence of Non Radial Solutions non radial solution. solutions, which implies the existence of non radial solutions. (The bigger the l is, the more complicated the solution structure becomes.) Conjecture B. For 0 l 2, solutions to (9) and (10) must Inequalities in . . Determinants Analysis and Geometry Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality . Logrithemic New Inequality . . . . . . . . . . . . . . be radially symmetric. Lin (2000): For 2 < l ̸ = ( k − 1 )( k + 2 ) , where k ≥ 2 there is a Dolbeault, Esteban, Tarantello (2009): For all k ≥ 2 and l > k ( k + 1 ) − 2, there are at least 2 ( k − 2 ) + 2 distinct radial

  35. New Sharp . . . . . . . . . . . . . . . . . . . . . . . . Existence of Non Radial Solutions non radial solution. solutions, which implies the existence of non radial solutions. (The bigger the l is, the more complicated the solution structure becomes.) Inequalities in . . Logrithemic Analysis and Geometry Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering . Inequality Determinants . . . . . New Inequality . . . . . . . . be radially symmetric. Lin (2000): For 2 < l ̸ = ( k − 1 )( k + 2 ) , where k ≥ 2 there is a Dolbeault, Esteban, Tarantello (2009): For all k ≥ 2 and l > k ( k + 1 ) − 2, there are at least 2 ( k − 2 ) + 2 distinct radial Conjecture B. For 0 < l ≤ 2, solutions to (9) and (10) must

  36. New Sharp . . . . . . . . . . . . . . . . . . . . . . . . Existence of Non Radial Solutions non radial solution. solutions, which implies the existence of non radial solutions. (The bigger the l is, the more complicated the solution structure becomes.) Inequalities in . . Logrithemic Analysis and Geometry Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering . Inequality Determinants . . . . . New Inequality . . . . . . . . be radially symmetric. Lin (2000): For 2 < l ̸ = ( k − 1 )( k + 2 ) , where k ≥ 2 there is a Dolbeault, Esteban, Tarantello (2009): For all k ≥ 2 and l > k ( k + 1 ) − 2, there are at least 2 ( k − 2 ) + 2 distinct radial Conjecture B. For 0 < l ≤ 2, solutions to (9) and (10) must

  37. 2 1 2 8 New Sharp . . . . . . . . . 2018) . . . . . . Main Theorem ( G. and Moradifam, Inventiones, Conjecture A. Both Conejcture A and B hold true. For 0 1 1 l Note symmetric. 2, solutions to (9) and (10) must be radially l Conjecture B. . 0 u J u 2 , 1 For . . Inequalities in Aubin-Onofri New Inequality Determinants Logrithemic Inequality Covering Sphere Inequality Determinants . Toeplitz Inequality and Lebedev-Milin Gui Changfeng Geometry Analysis and . . . . . . . . . . . . . . . . . . . . . .

  38. 2 1 2 8 New Sharp . . . . . . . . . . . . . . . . . . l 1 1 l Note symmetric. 2, solutions to (9) and (10) must be radially For 0 . Conjecture B. 2 , Conjecture A. Both Conejcture A and B hold true. 2018) Main Theorem ( G. and Moradifam, Inventiones, Inequalities in . . Aubin-Onofri Determinants Logrithemic Inequality Covering Sphere Inequality Determinants . Toeplitz Inequality and Lebedev-Milin Gui Changfeng Geometry Analysis and . New Inequality . . . . . . . . . . . . . . . . . . For α ≥ 1 inf u ∈M J α ( u ) = 0 .

  39. 2 1 2 8 New Sharp . . . . . . . . . . . . . . . . . . . . Main Theorem ( G. and Moradifam, Inventiones, 2018) Both Conejcture A and B hold true. Conjecture A. 2 , Conjecture B. symmetric. Note l 1 1 Inequalities in . . Determinants Logrithemic Inequality Covering Sphere Inequality Aubin-Onofri Toeplitz New Inequality Inequality and Lebedev-Milin Gui Changfeng Geometry Analysis and . Determinants . . . . . . . . . . . . . . . . . . For α ≥ 1 inf u ∈M J α ( u ) = 0 . For 0 < l ≤ 2, solutions to (9) and (10) must be radially

  40. New Sharp . . Inequalities in . . . . . . . . . . . . . . . . . . . . Main Theorem ( G. and Moradifam, Inventiones, 2018) Both Conejcture A and B hold true. Conjecture A. 2 , Conjecture B. symmetric. Note . . . Determinants Analysis and Geometry Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere . Inequality Logrithemic Covering New Inequality . . . . . . . . . . . . . . . For α ≥ 1 inf u ∈M J α ( u ) = 0 . For 0 < l ≤ 2, solutions to (9) and (10) must be radially α − 1 ) = 2 ( ρ l = 2 ( 1 8 π − 1 )

  41. 2 k y e 2 u dy 2 is a non constant positive New Sharp 1 and (11) A general equation on R 2 . . . . . . . . . . . . . 2 (12) Inequalities in K 2 y 0 2 l k y y y k y 2 where K y y 0 k y K 1 function satisfying C 2 k y . . . Inequality . . New Inequality Determinants Logrithemic Inequality Covering Sphere Aubin-Onofri . Determinants Toeplitz Inequality and Lebedev-Milin Gui Changfeng Geometry Analysis and . . . . . . . . . . . . . . . . . . . . . 2 Assume u ∈ C 2 ( R 2 ) satisfjes ∆ u + k ( | y | ) e 2 u = 0 in R 2 ,

  42. New Sharp . . . . . . . . A general equation on R 2 . . . . . . Inequalities in . (11) . K 2 y 0 2 l k y y y k y 2 and y 0 k y K 1 function satisfying (12) 1 . . . Aubin-Onofri New Inequality Determinants Logrithemic Inequality Covering Sphere Inequality Determinants . Toeplitz Inequality and Lebedev-Milin Gui Changfeng Geometry Analysis and . . 2 . . . . . . . . . . . . . . . . . . Assume u ∈ C 2 ( R 2 ) satisfjes ∆ u + k ( | y | ) e 2 u = 0 in R 2 , ∫ R 2 k ( | y | ) e 2 u dy = β < ∞ , 2 π where K ( y ) = k ( | y | ) ∈ C 2 ( R 2 ) is a non constant positive

  43. New Sharp . . . . . . Inequalities in . . . . . . . . . . . . . . . . . A general equation on R 2 (11) and 1 (12) function satisfying . . . Logrithemic Analysis and Geometry Changfeng Gui Lebedev-Milin Inequality and Toeplitz . Aubin-Onofri Inequality Sphere Covering Inequality Determinants Determinants . New Inequality . . . . . . . . . . . . Assume u ∈ C 2 ( R 2 ) satisfjes ∆ u + k ( | y | ) e 2 u = 0 in R 2 , ∫ R 2 k ( | y | ) e 2 u dy = β < ∞ , 2 π where K ( y ) = k ( | y | ) ∈ C 2 ( R 2 ) is a non constant positive ∆ ln( k ( | y | )) ≥ 0 , y ∈ R 2 ( K 1 ) | y | k ′ ( | y | ) ( K 2 ) lim = 2 l > 0 , y ∈ R 2 . k ( | y | ) | y |→∞

  44. New Sharp . . . . . . . . . . . . . . Inequalities in . . . . . . . . . . A general symmetry result The following general symmetry result is proven. Proposition . . . . Analysis and Geometry Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality Logrithemic Determinants New Inequality . . . . . . . . . . . . radially symmetric. Assume that K ( y ) = k ( | y | ) > 0 satisfjes ( K 1 ) − ( K 2 ) , and u is a solution to (11) - (12) with l + 1 < β ≤ 4 . Then u must be

  45. New Sharp . . . . . . . . . . . . . . . . . . . . . . . . Outline 1 Lebedev-Milin Inequality and Toeplitz Determinants 2 Aubin-Onofri Inequality 3 Sphere Covering Inequality 4 Logrithemic Determinants . . Inequalities in Logrithemic Analysis and Geometry Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality Determinants . New Inequality . . . . . . . . . . . . . 5 New Inequality

  46. New Sharp . . . . . . . . . . . . . . . . . . . . . . . . . . The Sphere Covering Inequality: Geometric . . Inequalities in Inequality Analysis and Geometry Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Logrithemic . Determinants New Inequality . . . . . . . . . . . Description

  47. w 1 in w 1 on f 1 in New Sharp . . . . . . . . . . . . . . . . Statement The Sphere Covering Inequality: Analytic 8 e w 2 dy e w 1 , then 0 or f 2 Furthermore if f 1 (14) e w 2 dy . e w 1 , then and w 2 Suppose w 2 (13) Theorem ( G. and Moradifam, Inventiones, 2018) Inequalities in . . Aubin-Onofri New Inequality Determinants Logrithemic Inequality Covering Sphere Inequality Determinants . Toeplitz Inequality and Lebedev-Milin Gui Changfeng Geometry Analysis and . . . . . . . . . . . . . . . . . . . . 8 . Let Ω be a simply connected subset of R 2 and assume w i ∈ C 2 (Ω) , i = 1 , 2 satisfy ∆ w i + e w i = f i ( y ) , where f 2 ≥ f 1 ≥ 0 in Ω .

  48. f 1 in New Sharp . . . . . . . . . . . . . . Inequalities in . . . 8 e w 2 dy e w 1 , then 0 or f 2 Furthermore if f 1 (14) e w 2 dy . e w 1 (13) Theorem ( G. and Moradifam, Inventiones, 2018) Statement The Sphere Covering Inequality: Analytic . . . . Determinants Logrithemic Inequality Covering Sphere Inequality Aubin-Onofri Toeplitz New Inequality Inequality and Lebedev-Milin Gui Changfeng Geometry Analysis and . Determinants . . . . . . . . . . . 8 . . . . . . . Let Ω be a simply connected subset of R 2 and assume w i ∈ C 2 (Ω) , i = 1 , 2 satisfy ∆ w i + e w i = f i ( y ) , where f 2 ≥ f 1 ≥ 0 in Ω . Suppose w 2 > w 1 in Ω and w 2 = w 1 on ∂ Ω , then

  49. f 1 in New Sharp . . . . . . . . . . . . Inequalities in . . . . . . . . The Sphere Covering Inequality: Analytic Statement Theorem ( G. and Moradifam, Inventiones, 2018) (13) (14) Furthermore if f 1 0 or f 2 , then e w 1 e w 2 dy . . . Determinants Logrithemic . Covering Sphere Inequality Aubin-Onofri Toeplitz New Inequality Inequality and Lebedev-Milin Gui Changfeng Geometry Analysis and Determinants Inequality . . . . . . . . . . 8 . . . . . . . Let Ω be a simply connected subset of R 2 and assume w i ∈ C 2 (Ω) , i = 1 , 2 satisfy ∆ w i + e w i = f i ( y ) , where f 2 ≥ f 1 ≥ 0 in Ω . Suppose w 2 > w 1 in Ω and w 2 = w 1 on ∂ Ω , then ∫ e w 1 + e w 2 dy ≥ 8 π. Ω

  50. New Sharp . . . Inequalities in . . . . . . . . . . . . . . . . . . . . The Sphere Covering Inequality: Analytic Statement Theorem ( G. and Moradifam, Inventiones, 2018) (13) (14) . . . Logrithemic Analysis and Geometry Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri . Sphere Covering Inequality Inequality Determinants . . . . . . . . . . . . New Inequality . Let Ω be a simply connected subset of R 2 and assume w i ∈ C 2 (Ω) , i = 1 , 2 satisfy ∆ w i + e w i = f i ( y ) , where f 2 ≥ f 1 ≥ 0 in Ω . Suppose w 2 > w 1 in Ω and w 2 = w 1 on ∂ Ω , then ∫ e w 1 + e w 2 dy ≥ 8 π. Ω Ω e w 1 + e w 2 dy > 8 π . ∫ Furthermore if f 1 ̸≡ 0 or f 2 ̸≡ f 1 in Ω , then

  51. New Sharp . . . . . . . . . . . . . . . . . . . . . . . . . Rigidity of Two Objects: Seesaw Efgect e w 1 dy vs Inequalities in . . Logrithemic Analysis and Geometry Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere . Inequality Covering Determinants . . . . New Inequality . . . . . . . . (15) ∫ ∫ e w 2 dy . Ω Ω

  52. New Sharp . . . . . . . . . . . . . . Inequalities in . . . . . . . . . . . Isoperimetric Inequalities . . . . Analysis and Geometry Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality Logrithemic Determinants . . . . . . . . . . . New Inequality Suppose Ω ⊂ R 2 , then L 2 ( ∂ Ω) ≥ 4 π A (Ω) Equality holds if and only if Ω is a disk.

  53. New Sharp . . . . . . . . . . . . . . . . . . A A 4 A L 2 i.e., R 2 4 R 2 . A L 2 If the sphere has radius R , then On the standard unit sphere with the metric induced from the Levy’s Isoperimetric inequalities on spheres (1919) . Inequalities in . . Determinants Logrithemic Inequality Covering Sphere Inequality Aubin-Onofri Toeplitz New Inequality Inequality and Lebedev-Milin Gui Changfeng Geometry Analysis and . Determinants . . . . . . . . . . . . . . . . . R 2 fmat metric of R 3 , L 2 ( ∂ Ω) ≥ A (Ω) ( 4 π − A (Ω) )

  54. New Sharp . . . . Inequalities in . . . . . . . . . . . . . . . . . . . . Levy’s Isoperimetric inequalities on spheres (1919) On the standard unit sphere with the metric induced from the If the sphere has radius R , then i.e., . . . Logrithemic Analysis and Geometry Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants . Inequality Sphere Covering Inequality Aubin-Onofri Determinants . . . . . . . . . . . New Inequality . fmat metric of R 3 , L 2 ( ∂ Ω) ≥ A (Ω) ( 4 π − A (Ω) ) 4 π R 2 − A (Ω) ( ) L 2 ( ∂ Ω) ≥ A (Ω) / R 2 ( 4 π − A (Ω) / R 2 ) L 2 ( ∂ Ω) ≥ A (Ω)

  55. e v ds 2 New Sharp . . . . . . . . . . . . . . . . . 0 4 e 2 v Then 1 with the gaussian curvature K 2 K x e 2 v . v Assume v satisfjes projection, and equip it with a metric conformal to the fmat Alexandrov-Bol’s inequality (1941) . . Inequalities in . . Determinants Logrithemic Inequality Covering Sphere Inequality Aubin-Onofri Toeplitz New Inequality Inequality and Lebedev-Milin Gui Changfeng Geometry Analysis and . Determinants . . . . . . . . . . . . . . . . . e 2 v In general, we can identify a sphere with R 2 by a stereographic metric of R 2 , i.e., ds 2 = e 2 v ( dx 2 1 + dx 2 2 ) .

  56. e v ds 2 New Sharp . Inequalities in . . . . . . . . . . . . . . . . . . . . . Alexandrov-Bol’s inequality (1941) projection, and equip it with a metric conformal to the fmat Assume v satisfjes Then e 2 v 4 . . . Determinants Analysis and Geometry Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere . Inequality Logrithemic Covering New Inequality . . . . . . . e 2 v . . . . . . . In general, we can identify a sphere with R 2 by a stereographic metric of R 2 , i.e., ds 2 = e 2 v ( dx 2 1 + dx 2 2 ) . ∆ v + K ( x ) e 2 v = 0 , R 2 with the gaussian curvature K ≤ 1 .

  57. New Sharp . . . . . . . Inequalities in . . . . . . . . . . . . . . . . . Alexandrov-Bol’s inequality (1941) projection, and equip it with a metric conformal to the fmat Assume v satisfjes Then . . . Logrithemic Analysis and Geometry Changfeng Gui Lebedev-Milin . Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality Inequality and Determinants . . New Inequality . . . . . . . . . . In general, we can identify a sphere with R 2 by a stereographic metric of R 2 , i.e., ds 2 = e 2 v ( dx 2 1 + dx 2 2 ) . ∆ v + K ( x ) e 2 v = 0 , R 2 with the gaussian curvature K ≤ 1 . ∫ (∫ ∫ e v ds ) 2 ≥ e 2 v )( e 2 v ) ( 4 π − ∂ Ω Ω Ω

  58. New Sharp . . . . . . . . . . . . . . . . . . . . . . . . Outline 1 Lebedev-Milin Inequality and Toeplitz Determinants 2 Aubin-Onofri Inequality 3 Sphere Covering Inequality 4 Logrithemic Determinants . . Inequalities in Logrithemic Analysis and Geometry Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality Determinants . New Inequality . . . . . . . . . . . . . 5 New Inequality

  59. 0 and M u u New Sharp . . . . . . . . Geometry . . . Inequalities in . . . Logrithemic Determinants and Conformal M 2 2 M M 2 k 0 uds 0 M nds 0 M 1 . F u are fmat. Defjne assume that M M consists of nice boundary with geodesic curvature k 0 , If M M . . . Sphere . . . New Inequality Determinants Logrithemic Inequality Covering Inequality . Aubin-Onofri Determinants Toeplitz Inequality and Lebedev-Milin Gui Changfeng Geometry Analysis and . e u ds 0 . . . . . . . . . . . . . . . . . Given a Riemanian surface ( M , σ 0 ) with Gaussian curvature K 0 and normalized area | M | = 1. Consider a conformal metric on σ = e 2 u on M . If ∂ M = ∅ , defjne ∫ ∫ ∫ F ( u ) = 1 |∇ 0 u | 2 dA 0 + K 0 udA 0 − πχ ( M ) ln( e 2 u dA 0 ) .

  60. New Sharp . . . . . . . . . Inequalities in . . . . . . . . . . . . . Logrithemic Determinants and Conformal Geometry 2 M M M 2 . . . Determinants Changfeng Geometry Analysis and . Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality Logrithemic New Inequality Gui . . . . . . . . . . . . . . Lebedev-Milin Given a Riemanian surface ( M , σ 0 ) with Gaussian curvature K 0 and normalized area | M | = 1. Consider a conformal metric on σ = e 2 u on M . If ∂ M = ∅ , defjne ∫ ∫ ∫ F ( u ) = 1 |∇ 0 u | 2 dA 0 + K 0 udA 0 − πχ ( M ) ln( e 2 u dA 0 ) . If ∂ M consists of nice boundary with geodesic curvature k 0 , assume that ( M , σ 0 ) and ( M , σ ) are fmat. Defjne ∫ u ∂ u ∫ ∫ F ( u ) = 1 ∂ nds 0 + k 0 uds 0 − 2 πχ ( M ) ln( e u ds 0 ) . ∂ M ∂ M ∂ M

  61. New Sharp . . Inequalities in . . . . . . . . . . . . . . . . . . . . . Extremals B. Osgood, R. Phillips and P. Sarnak. (1988): Maximizing Det is equivalent to minimizing F . . . . Logrithemic Analysis and Geometry Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality . Covering Inequality Sphere Determinants . . . . New Inequality . . Uniformization, Isospectral Properties, etc. . . . . . . . log Det (∆ σ ) ∂ u ∫ Det (∆ σ 0 ) = − 1 6 π F ( u ) + 1 4 π ∂ nds 0 ∂ M

  62. New Sharp . . . Inequalities in . . . . . . . . . . . . . . . . . . . . . . Extremals B. Osgood, R. Phillips and P. Sarnak. (1988): . . . Inequality Analysis and Geometry Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri . Sphere Covering Inequality Logrithemic . . Determinants . . . . . . . . . New Inequality Uniformization, Isospectral Properties, etc. log Det (∆ σ ) ∂ u ∫ Det (∆ σ 0 ) = − 1 6 π F ( u ) + 1 4 π ∂ nds 0 ∂ M Maximizing log Det (∆ σ ) is equivalent to minimizing F .

  63. New Sharp . . . Inequalities in . . . . . . . . . . . . . . . . . . . . . . Extremals B. Osgood, R. Phillips and P. Sarnak. (1988): . . . Inequality Analysis and Geometry Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri . Sphere Covering Inequality Logrithemic . . Determinants . . . . . . . . . New Inequality Uniformization, Isospectral Properties, etc. log Det (∆ σ ) ∂ u ∫ Det (∆ σ 0 ) = − 1 6 π F ( u ) + 1 4 π ∂ nds 0 ∂ M Maximizing log Det (∆ σ ) is equivalent to minimizing F .

  64. 3 with degree at most n S 2 e u p x d H 1 S 2 1 2 u 2 d S 2 ud S 2 e u d Chang-Hang showed: p 0 If all polynomials in n Let 1 (16) 0 there exist If Widom’s observation (1988), Chang-Hang (2019) . . Inequalities in . . . n , then for any R such that N n n S 2 4 u J 1 n n N n 2 4 and and C n 2 N 2 Here, N 1 u C n u N n 1 J . . New Sharp . Logrithemic . . . . . . . . . . New Inequality Determinants Inequality . Covering Sphere Inequality Aubin-Onofri Determinants Toeplitz Inequality and Lebedev-Milin Gui Changfeng Geometry Analysis and . . . . . . . . . . . . . . . . . . . . . ∫ S 1 e ik θ e u d θ = 0 , − n ≤ k ≤ n , then ∫ ∫ log( 1 S 1 e u d θ ) − 1 S 1 ud θ ≤ 4 π ( n + 1 ) ||∇ u || 2 L 2 ( D ) 2 π 2 π

  65. S 2 e u p x d H 1 S 2 1 2 u 2 d S 2 ud S 2 e u d (16) n , then for any p 0 If Let Chang-Hang showed: Widom’s observation (1988), Chang-Hang (2019) 1 If N n . . . Inequalities in . . . 0 there exist J and C n n S 2 4 u J 1 n n N n 2 4 and R such that 2 N 2 Here, N 1 u C n u N n 1 . . New Sharp . Logrithemic . . . . . . . . . . New Inequality Determinants Inequality . Covering Sphere Inequality Aubin-Onofri Determinants Toeplitz Inequality and Lebedev-Milin Gui Changfeng Geometry Analysis and . . . . . . . . . . . . . . . . . . . . ∫ S 1 e ik θ e u d θ = 0 , − n ≤ k ≤ n , then ∫ ∫ log( 1 S 1 e u d θ ) − 1 S 1 ud θ ≤ 4 π ( n + 1 ) ||∇ u || 2 L 2 ( D ) 2 π 2 π P n = { all polynomials in R 3 with degree at most n } .

  66. 1 2 u 2 d S 2 ud S 2 e u d Widom’s observation (1988), Chang-Hang (2019) . . . . . . Inequalities in . 1 . . . . . . If Let (16) 2 S 2 4 u J 1 n n N n n Chang-Hang showed: 4 and 2 N 2 Here, N 1 1 J If . . New Sharp . Covering . . . . . New Inequality Determinants Logrithemic Inequality Sphere . Inequality Aubin-Onofri Determinants Toeplitz Inequality and Lebedev-Milin Gui Changfeng Geometry Analysis and . . . . . . . . . . . . . . . . . . ∫ S 1 e ik θ e u d θ = 0 , − n ≤ k ≤ n , then ∫ ∫ log( 1 S 1 e u d θ ) − 1 S 1 ud θ ≤ 4 π ( n + 1 ) ||∇ u || 2 L 2 ( D ) 2 π 2 π P n = { all polynomials in R 3 with degree at most n } . ∫ S 2 e u p ( x ) d ω = 0 , ∀ p ∈ P n , then for any ϵ > 0 there exist N ( n ) ∈ Z and C n ( ϵ ) ∈ R such that N ( n ) + ϵ ( u ) ≥ C n ( ϵ ) > −∞ , ∀ u ∈ H 1 ( S 2 ) .

  67. u 2 d S 2 ud S 2 e u d . . . . . . . Inequalities in . . . . . . . . . If S 2 4 u J 1 J Let . Chang-Hang showed: (16) 1 If Widom’s observation (1988), Chang-Hang (2019) . . New Sharp . Aubin-Onofri Logrithemic . Inequality Covering Sphere Inequality Determinants New Inequality Toeplitz Inequality and Lebedev-Milin Gui Changfeng Geometry Analysis and Determinants . . . . . . . . . . . . . . . . . . . ∫ S 1 e ik θ e u d θ = 0 , − n ≤ k ≤ n , then ∫ ∫ log( 1 S 1 e u d θ ) − 1 S 1 ud θ ≤ 4 π ( n + 1 ) ||∇ u || 2 L 2 ( D ) 2 π 2 π P n = { all polynomials in R 3 with degree at most n } . ∫ S 2 e u p ( x ) d ω = 0 , ∀ p ∈ P n , then for any ϵ > 0 there exist N ( n ) ∈ Z and C n ( ϵ ) ∈ R such that N ( n ) + ϵ ( u ) ≥ C n ( ϵ ) > −∞ , ∀ u ∈ H 1 ( S 2 ) . 2 ⌋ + 1 ) 2 ≤ N ( n ) ≤ n ( n + 1 ) Here, N ( 1 ) = 2 , N ( 2 ) = 4 and ( ⌊ n

  68. New Sharp . . . . . . . . . . . Inequalities in . . . . . (16) 4 1 J If Let Chang-Hang showed: 1 . If Widom’s observation (1988), Chang-Hang (2019) . . . . . . . Toeplitz Inequality and Lebedev-Milin Gui Changfeng . Geometry Analysis and Aubin-Onofri Inequality Sphere Covering Inequality Logrithemic Determinants New Inequality . . . . . . . . Determinants . . . . . . . ∫ S 1 e ik θ e u d θ = 0 , − n ≤ k ≤ n , then ∫ ∫ log( 1 S 1 e u d θ ) − 1 S 1 ud θ ≤ 4 π ( n + 1 ) ||∇ u || 2 L 2 ( D ) 2 π 2 π P n = { all polynomials in R 3 with degree at most n } . ∫ S 2 e u p ( x ) d ω = 0 , ∀ p ∈ P n , then for any ϵ > 0 there exist N ( n ) ∈ Z and C n ( ϵ ) ∈ R such that N ( n ) + ϵ ( u ) ≥ C n ( ϵ ) > −∞ , ∀ u ∈ H 1 ( S 2 ) . 2 ⌋ + 1 ) 2 ≤ N ( n ) ≤ n ( n + 1 ) Here, N ( 1 ) = 2 , N ( 2 ) = 4 and ( ⌊ n J α ( u ) = α ∫ ∫ ∫ S 2 |∇ u | 2 d ω + S 2 ud ω − log S 2 e u d ω,

  69. New Sharp . . . . . . . . . . . . . . . . . . . . . . . . Outline 1 Lebedev-Milin Inequality and Toeplitz Determinants 2 Aubin-Onofri Inequality 3 Sphere Covering Inequality 4 Logrithemic Determinants . . Inequalities in Logrithemic Analysis and Geometry Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality Determinants . New Inequality . . . . . . . . . . . . . 5 New Inequality

  70. u 2 d H 1 S 2 H 1 S 2 is NOT bounded below in H 1 S 2 for New Sharp . . . . . . . . A Variant of Aubin-Onofri Inequality, Alice Chang Inequalities in . . . . . . Theorem (Chang and G., 2019) and G., 2019 (17) But I u 0 u 2 3 we have I In particular, when u 3 S 2 2 3 u I 1 2 , we have For any . . . . Sphere . . . New Inequality Determinants Logrithemic Inequality Covering Inequality . Aubin-Onofri Determinants Toeplitz Inequality and Lebedev-Milin Gui Changfeng Geometry Analysis and . 2 3 . . . . . . . . . . . . . . . . . . Let us consider the following functionals in H 1 ( S 2 ) : ∫ ∫ I α ( u ) = α S 2 |∇ u | 2 d ω + 2 S 2 ud ω ∫ ∫ S 2 e 2 u d ω ) 2 − ∑ − 1 2 log[( ( S 2 e 2 u x i d ω ) 2 ] . i = 1

  71. H 1 S 2 is NOT bounded below in H 1 S 2 for New Sharp Inequalities in . . . . . . . . . . . . . . . . . . . A Variant of Aubin-Onofri Inequality, Alice Chang and G., 2019 3 Theorem (Chang and G., 2019) (17) In particular, when 2 3 we have I u 0 u But I . . . Aubin-Onofri Logrithemic Inequality Covering . Sphere Inequality Determinants New Inequality Toeplitz Inequality and Lebedev-Milin Gui Changfeng Geometry Analysis and Determinants 2 3 . . . . . . . . . . . . . . . . . . Let us consider the following functionals in H 1 ( S 2 ) : ∫ ∫ I α ( u ) = α S 2 |∇ u | 2 d ω + 2 S 2 ud ω ∫ ∫ S 2 e 2 u d ω ) 2 − ∑ − 1 2 log[( ( S 2 e 2 u x i d ω ) 2 ] . i = 1 For any α > 1 / 2 , we have ∫ I α ( u ) ≥ ( α − 2 / 3 ) S 2 |∇ u | 2 d ω, ∀ u ∈ H 1 ( S 2 ) .

  72. is NOT bounded below in H 1 S 2 for New Sharp . . . . . . . . . Inequalities in . . . . . . . . . . . . . A Variant of Aubin-Onofri Inequality, Alice Chang and G., 2019 3 Theorem (Chang and G., 2019) (17) But I . . . Logrithemic Analysis and Geometry Changfeng Gui Lebedev-Milin . Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality 2 3 . Determinants New Inequality . . . . . . . . . . . . . . Let us consider the following functionals in H 1 ( S 2 ) : ∫ ∫ I α ( u ) = α S 2 |∇ u | 2 d ω + 2 S 2 ud ω ∫ ∫ S 2 e 2 u d ω ) 2 − ∑ − 1 2 log[( ( S 2 e 2 u x i d ω ) 2 ] . i = 1 For any α > 1 / 2 , we have ∫ I α ( u ) ≥ ( α − 2 / 3 ) S 2 |∇ u | 2 d ω, ∀ u ∈ H 1 ( S 2 ) . In particular, when α ≥ 2 / 3 we have I α ( u ) ≥ 0 , ∀ u ∈ H 1 ( S 2 )

  73. New Sharp . . . . . . . . . Inequalities in . . . . . . . . . . . . . . A Variant of Aubin-Onofri Inequality, Alice Chang and G., 2019 3 Theorem (Chang and G., 2019) (17) . . . Logrithemic Analysis and Geometry Changfeng . Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality Gui Determinants . . . New Inequality . . . . . . . . . . Let us consider the following functionals in H 1 ( S 2 ) : ∫ ∫ I α ( u ) = α S 2 |∇ u | 2 d ω + 2 S 2 ud ω ∫ ∫ S 2 e 2 u d ω ) 2 − ∑ − 1 2 log[( ( S 2 e 2 u x i d ω ) 2 ] . i = 1 For any α > 1 / 2 , we have ∫ I α ( u ) ≥ ( α − 2 / 3 ) S 2 |∇ u | 2 d ω, ∀ u ∈ H 1 ( S 2 ) . In particular, when α ≥ 2 / 3 we have I α ( u ) ≥ 0 , ∀ u ∈ H 1 ( S 2 ) But I α is NOT bounded below in H 1 ( S 2 ) for α < 2 / 3 .

  74. 1 a i x i 1 a 2 . . . . . . . . New Sharp Let . . . . . Inequalities in . Euler-Lagrange Equation Defjne (18) i 0 on S 2 1 e 2 u i i 3 1 3 . 1 u is in The Euler Lagrange equation for the functional I Proposition (19) . . . Inequality . . New Inequality Determinants Logrithemic Inequality Covering Sphere Aubin-Onofri . Determinants Toeplitz Inequality and Lebedev-Milin Gui Changfeng Geometry Analysis and . . (20) . . . . . . . . . . . . . . . . . ∫ a i = S 2 e 2 u x i d ω, i = 1 , 2 , 3 . ∫ H = { u ∈ H 1 ( S 2 ) : S 2 e 2 u d ω = 1 } .

  75. New Sharp . . . . Inequalities in . . . . . . . . . . . . . . . . . . Euler-Lagrange Equation Let (18) Defjne (19) Proposition i . . . Determinants Analysis and Geometry Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants . Inequality Sphere Covering Inequality Logrithemic Aubin-Onofri New Inequality . . . . . . . . . . . . . (20) . ∫ a i = S 2 e 2 u x i d ω, i = 1 , 2 , 3 . ∫ H = { u ∈ H 1 ( S 2 ) : S 2 e 2 u d ω = 1 } . The Euler Lagrange equation for the functional I α in H is α ∆ u + 1 − ∑ 3 e 2 u − 1 = 0 on S 2 . i = 1 a i x i 1 − ∑ 3 i = 1 a 2

  76. a 1 a 2 a 3 New Sharp . . . . . . . . . . . . . . . . . Inequalities in 3 , for any a After a proper rotation, the solution u is explicitly given by the 0 0 0 . In particular, u is axially symmetric about a if a such that (18) holds. solution u to equation (20) in B 1 , there is a unique 2 . ii) When constant solutions; 3 , equation (20) has only Proposition Existence and Nonexistence of Solutions . . . . Determinants Logrithemic Inequality Covering Sphere Inequality Aubin-Onofri Toeplitz . Inequality and Lebedev-Milin Gui Changfeng Geometry Analysis and Determinants New Inequality . . . . . . . . . . . . . . . . . formula in (26) below. i ) When α ∈ [ 1 2 , 1 ) and α ̸ = 2

  77. New Sharp . Inequalities in . . . . . . . . . . . . . . . . . . . . . Existence and Nonexistence of Solutions Proposition 3 , equation (20) has only constant solutions; In particular, u is axially symmetric about a if a 0 0 0 . After a proper rotation, the solution u is explicitly given by the . . . Determinants Analysis and Geometry Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering . Logrithemic Inequality New Inequality . . . . . . . formula in (26) below. . . . . . . . i ) When α ∈ [ 1 2 , 1 ) and α ̸ = 2 ii) When α = 2 3 , for any ⃗ a = ( a 1 , a 2 , a 3 ) ∈ B 1 , there is a unique solution u to equation (20) in H such that (18) holds.

  78. New Sharp . . Inequalities in . . . . . . . . . . . . . . . . . . . . . Existence and Nonexistence of Solutions Proposition 3 , equation (20) has only constant solutions; After a proper rotation, the solution u is explicitly given by the . . . Logrithemic Analysis and Geometry Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality . Covering Inequality Sphere Determinants . . . . New Inequality . . formula in (26) below. . . . . . . . i ) When α ∈ [ 1 2 , 1 ) and α ̸ = 2 ii) When α = 2 3 , for any ⃗ a = ( a 1 , a 2 , a 3 ) ∈ B 1 , there is a unique solution u to equation (20) in H such that (18) holds. In particular, u is axially symmetric about ⃗ a if ⃗ a ̸ = ( 0 , 0 , 0 ) .

  79. New Sharp . . Inequalities in . . . . . . . . . . . . . . . . . . . . . Existence and Nonexistence of Solutions Proposition 3 , equation (20) has only constant solutions; After a proper rotation, the solution u is explicitly given by the . . . Logrithemic Analysis and Geometry Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality . Covering Inequality Sphere Determinants . . . . New Inequality . . formula in (26) below. . . . . . . . i ) When α ∈ [ 1 2 , 1 ) and α ̸ = 2 ii) When α = 2 3 , for any ⃗ a = ( a 1 , a 2 , a 3 ) ∈ B 1 , there is a unique solution u to equation (20) in H such that (18) holds. In particular, u is axially symmetric about ⃗ a if ⃗ a ̸ = ( 0 , 0 , 0 ) .

  80. x j e 2 u d New Sharp . . . . . . . . . . . . . . . . Inequalities in . . . . . . Kazdan-Warner condition For the Gaussian curvature equation: (21) we have S 2 K x 0 for each j= 1,2, 3 . . . . Analysis and Geometry Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality Logrithemic Determinants New Inequality . . . . . . . . . . . . . . (22) ∆ u + K ( x ) e 2 u = 1 on S 2 ,

  81. New Sharp . . . . . . . . . . . . . . . . . . . . . . . . . Kazdan-Warner condition For the Gaussian curvature equation: (21) we have Inequalities in . . Logrithemic Analysis and Geometry Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering . Inequality Determinants . . . . . New Inequality . . . . . . . (22) ∆ u + K ( x ) e 2 u = 1 on S 2 , ∫ S 2 ( ∇ K ( x ) · ∇ x j ) e 2 u d ω = 0 for each j= 1,2, 3 .

  82. 1 y y 2 y 2 e 2 w a b 2 y 2 e 2 w dy 2 b 2 (23) 3 u w y 2 . Let be on Use the stereographic projection to transform the equation to New Sharp 2 2 . . . . . . . . Stereographic Project for y 1 1 a 1 0 and 1 b a 1 a where b 2 . (24) 2 0 in 1 6 w Then w satisfjes 2 Inequalities in . . Covering . . . . . . New Inequality Determinants Logrithemic Inequality Sphere . Inequality Aubin-Onofri Determinants Toeplitz Inequality and Lebedev-Milin Gui Changfeng Geometry Analysis and . . . . . . . . . . . . . . (25) . . . . . . . . For α = 2 3 , we assume that ( a 1 , a 2 , a 3 ) = ( 0 , 0 , a ) with a ∈ ( 0 , 1 ) and consider 3 ∆ u + 1 − ax 3 1 − a 2 e 2 u − 1 = 0 on S 2 .

  83. y 2 e 2 w a b 2 y 2 e 2 w dy 2 b 2 New Sharp . Stereographic Project . . . . . . (23) . . . . . Inequalities in . 2 w Use the stereographic projection to transform the equation to a a 1 0 and 1 b a 1 1 Then w satisfjes where b 2 (24) 2 0 in 1 6 . . . . Sphere . . . New Inequality Determinants Logrithemic Inequality Covering Inequality . Aubin-Onofri Determinants Toeplitz Inequality and Lebedev-Milin Gui Changfeng Geometry Analysis and . . . . . . . . . . . . . . . . . . . (25) For α = 2 3 , we assume that ( a 1 , a 2 , a 3 ) = ( 0 , 0 , a ) with a ∈ ( 0 , 1 ) and consider 3 ∆ u + 1 − ax 3 1 − a 2 e 2 u − 1 = 0 on S 2 . be on R 2 . Let w ( y ) := u (Π − 1 ( y )) − 3 2 ln( 1 + | y | 2 ) for y ∈ R 2 .

  84. y 2 e 2 w dy 2 b 2 New Sharp . . . . . . . . . Inequalities in . . . . . . . . . . . Stereographic Project 2 (23) Use the stereographic projection to transform the equation to Then w satisfjes 6 (24) 1 a . . . Determinants Logrithemic Inequality Covering . Inequality Aubin-Onofri Toeplitz New Inequality Inequality and Lebedev-Milin Gui Changfeng Geometry Analysis and Determinants Sphere . . . . . . . . . . . (25) . . . . . For α = 2 3 , we assume that ( a 1 , a 2 , a 3 ) = ( 0 , 0 , a ) with a ∈ ( 0 , 1 ) and consider 3 ∆ u + 1 − ax 3 1 − a 2 e 2 u − 1 = 0 on S 2 . be on R 2 . Let w ( y ) := u (Π − 1 ( y )) − 3 2 ln( 1 + | y | 2 ) for y ∈ R 2 . 1 + a ( b 2 + | y | 2 ) e 2 w = 0 in R 2 ∆ w + where b 2 = 1 + a 1 − a > 1 , b > 0 and

  85. New Sharp . . . . . Inequalities in . . . . . . . . . . . . . . . . . Stereographic Project 2 (23) Use the stereographic projection to transform the equation to Then w satisfjes 6 (24) . . . Determinants Analysis and Geometry Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants . Inequality Sphere Covering Inequality Logrithemic Aubin-Onofri New Inequality . . . . . . . . . . . . . (25) . For α = 2 3 , we assume that ( a 1 , a 2 , a 3 ) = ( 0 , 0 , a ) with a ∈ ( 0 , 1 ) and consider 3 ∆ u + 1 − ax 3 1 − a 2 e 2 u − 1 = 0 on S 2 . be on R 2 . Let w ( y ) := u (Π − 1 ( y )) − 3 2 ln( 1 + | y | 2 ) for y ∈ R 2 . 1 + a ( b 2 + | y | 2 ) e 2 w = 0 in R 2 ∆ w + where b 2 = 1 + a 1 − a > 1 , b > 0 and ∫ R 2 ( b 2 + | y | 2 ) e 2 w dy = ( 1 + a ) π.

  86. New Sharp . . . Inequalities in . . . . . . . . . . . . . . . . . . . . . Exact Solution Now it is easy to verify directly that 2 2 . . . Logrithemic Analysis and Geometry Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri . Sphere Covering Inequality Inequality Determinants . . . New Inequality . . is a solution to (23). . . . . . . . 2 ln( b 2 + | y | 2 ) + 2 ln b + 1 w ( y ) = − 3 2 ln 1 + b 2 is a solution to (24) and (25), and hence u ( x ) defjned by 2 ln 1 + | y | 2 u ( x ) = u (Π − 1 ( y )) := 3 b 2 + | y | 2 + 2 ln b + 1 2 ln 1 + b 2 (26)

  87. I 2 3 u 2 3 b a 2 a x New Sharp I b Direct computations show that (27) 2 Defjne know that the solution above is a unique solution. Use symmetry result of G.-Moradifam (2018) and uniqueness result of C.S. Lin (2000) on axially symmetric solutions, we b Symmetry and Uniqueness of Solutions . . . . . . . u b if b x 1 a x 1 1 u Indeed, 0 0 2 3 2 if b u I . 3 Inequalities in . . Inequality . . . . . . . New Inequality Determinants Logrithemic Covering . Sphere Inequality Aubin-Onofri Determinants Toeplitz Inequality and Lebedev-Milin Gui Changfeng Geometry Analysis and . . . . . . . . . . . . . . . . . . . . . . S 2 α ln 1 + | y | 2 u α, b ( x ) = u α, b (Π − 1 ( y )) := 1 b 2 + | y | 2 + 2 ln b + 1 2 ln 1 + b 2

  88. New Sharp . . . . . . . Inequalities in . . . . . . . . . Defjne Indeed, 3 3 Direct computations show that (27) 2 know that the solution above is a unique solution. . result of C.S. Lin (2000) on axially symmetric solutions, we Use symmetry result of G.-Moradifam (2018) and uniqueness Symmetry and Uniqueness of Solutions . . . . . . . Logrithemic Inequality Covering Sphere Inequality Aubin-Onofri Toeplitz New Inequality Inequality and Lebedev-Milin Gui Changfeng Geometry Analysis and Determinants Determinants . . . . . . . . . . . . . . . . α ln 1 + | y | 2 u α, b ( x ) = u α, b (Π − 1 ( y )) := 1 b 2 + | y | 2 + 2 ln b + 1 2 ln 1 + b 2 lim b →∞ I α ( u α, b ) = −∞ , if α < 2 lim b →∞ I α ( u α, b ) = ∞ , if α > 2 ∀ b > 0 3 ( u 2 3 , b ) = 0 , I 2 a ( x ) = − 1 α ln ( 1 − ⃗ a · x ) + ln( 1 − | ⃗ a | 2 ) , x ∈ S 2 . u α,⃗

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend