sharp phase transition for bargmann fock percolation
play

Sharp phase transition for Bargmann-Fock percolation Hugo - PowerPoint PPT Presentation

Sharp phase transition for Bargmann-Fock percolation Hugo Vanneuville (ICJ, Universit e Lyon 1) joint work with Alejandro Rivera (IF, Universit e de Grenoble) Random waves in Oxford, 19 th june, 2018 1/9 Hugo Vanneuville (ICJ, Universit


  1. Sharp phase transition for Bargmann-Fock percolation Hugo Vanneuville (ICJ, Universit´ e Lyon 1) joint work with Alejandro Rivera (IF, Universit´ e de Grenoble) Random waves in Oxford, 19 th june, 2018 1/9 Hugo Vanneuville (ICJ, Universit´ e Lyon 1) Sharp phase transition for Bargmann-Fock percolation

  2. ( f ( x )) x ∈ R 2 planar Bargmann-Fock field E [ f ( x ) f ( y )] = exp( −| x − y | 2 / 2) . Connections properties of the sets { f > − ℓ } ? { f > − ℓ } is coloured black, its biggest component is coloured blue ℓ = − 0 . 1 ℓ = 0 ℓ = 0 . 1 Simulations by Alejandro Rivera 2/9 Hugo Vanneuville (ICJ, Universit´ e Lyon 1) Sharp phase transition for Bargmann-Fock percolation

  3. ( f ( x )) x ∈ R 2 planar Bargmann-Fock field f > − ℓ Cross ℓ ( R ) := R 2 R 2/9 Hugo Vanneuville (ICJ, Universit´ e Lyon 1) Sharp phase transition for Bargmann-Fock percolation

  4. ( f ( x )) x ∈ R 2 planar Bargmann-Fock field f > − ℓ Cross ℓ ( R ) := R 2 R Theorem (Sharp phase transition) Beffara-Gayet, 16 ( ℓ = 0 ); Rivera-V, 17 ( ℓ � = 0 )  ≤ exp( − c ( ℓ ) R ) if ℓ < 0     P [ Cross ℓ ( R )] � � ∈ c , 1 − c if ℓ = 0    ≥ 1 − exp( − c ( ℓ ) R ) if ℓ > 0  Generalizations: Beffara-Gayet, Beliaev-Muirhead, Beliaev-Muirhead- Wigman, Rivera-V ( ℓ = 0); Muirhead-V ( ℓ � = 0) 2/9 Hugo Vanneuville (ICJ, Universit´ e Lyon 1) Sharp phase transition for Bargmann-Fock percolation

  5. ( f ( x )) x ∈ R 2 planar Bargmann-Fock field f > − ℓ Cross ℓ ( R ) := R 2 R P [ Cross ℓ ( R )] 1 0 ℓ 2/9 Hugo Vanneuville (ICJ, Universit´ e Lyon 1) Sharp phase transition for Bargmann-Fock percolation

  6. ( f ( x )) x ∈ R 2 planar Bargmann-Fock field f > − ℓ Cross ℓ ( R ) := R 2 R 2/9 Hugo Vanneuville (ICJ, Universit´ e Lyon 1) Sharp phase transition for Bargmann-Fock percolation

  7. ( f ( x )) x ∈ R 2 planar Bargmann-Fock field f > − ℓ Cross ℓ ( R ) := R 2 R 2/9 Hugo Vanneuville (ICJ, Universit´ e Lyon 1) Sharp phase transition for Bargmann-Fock percolation

  8. ( f ( x )) x ∈ R 2 planar Bargmann-Fock field f > − ℓ Cross ℓ ( R ) := R 2 R 2/9 Hugo Vanneuville (ICJ, Universit´ e Lyon 1) Sharp phase transition for Bargmann-Fock percolation

  9. ( f ( x )) x ∈ R 2 planar Bargmann-Fock field f > − ℓ Cross ℓ ( R ) := R 2 R 2/9 Hugo Vanneuville (ICJ, Universit´ e Lyon 1) Sharp phase transition for Bargmann-Fock percolation

  10. ( f ( x )) x ∈ R 2 planar Bargmann-Fock field f > − ℓ Cross ℓ ( R ) := R 2 R 2/9 Hugo Vanneuville (ICJ, Universit´ e Lyon 1) Sharp phase transition for Bargmann-Fock percolation

  11. ( f ( x )) x ∈ R 2 planar Bargmann-Fock field f > − ℓ Cross ℓ ( R ) := R 2 R 2/9 Hugo Vanneuville (ICJ, Universit´ e Lyon 1) Sharp phase transition for Bargmann-Fock percolation

  12. ( f ( x )) x ∈ R 2 planar Bargmann-Fock field f > − ℓ Cross ℓ ( R ) := R 2 R Corollary (The critical threshold is ℓ = 0) Alexander, 96; Beffara-Gayet, 17 ( ℓ ≤ 0 ); Rivera-V, 17 ( ℓ > 0 ) If ℓ ≤ 0 then a.s. there is no unbounded connected component in { f > − ℓ } . If ℓ > 0 then a.s. there is a unique unbounded connected component in { f > − ℓ } . Early works: Molchanov-Stepanov, 83 ( | ℓ | very large) 2/9 Hugo Vanneuville (ICJ, Universit´ e Lyon 1) Sharp phase transition for Bargmann-Fock percolation

  13. ( f ( x )) x ∈ R 2 planar Bargmann-Fock field f > − ℓ Cross ℓ ( R ) := R 2 R P [ Cross ℓ ( R )] 1 0 ℓ 2/9 Hugo Vanneuville (ICJ, Universit´ e Lyon 1) Sharp phase transition for Bargmann-Fock percolation

  14. Sharp transitions for Boolean functions p ∈ [0 , 1], equip {− 1 , 1 } N with P p := ( p δ 1 + (1 − p ) δ − 1 ) ⊗ N F : {− 1 , 1 } N → {− 1 , 1 } measurable increasing If ω ∈ {− 1 , 1 } N and i ∈ N , let ω i = ( ω 1 , · · · , ω i − 1 , − ω i , ω i +1 , · · · ) 3/9 Hugo Vanneuville (ICJ, Universit´ e Lyon 1) Sharp phase transition for Bargmann-Fock percolation

  15. Sharp transitions for Boolean functions p ∈ [0 , 1], equip {− 1 , 1 } N with P p := ( p δ 1 + (1 − p ) δ − 1 ) ⊗ N F : {− 1 , 1 } N → {− 1 , 1 } measurable increasing If ω ∈ {− 1 , 1 } N and i ∈ N , let ω i = ( ω 1 , · · · , ω i − 1 , − ω i , ω i +1 , · · · ) Theorem (Kolmogorov 0-1 law) If for every i ∈ N and every ω ∈ {− 1 , 1 } N , F ( ω i ) = F ( ω ) , then p �→ P p [ F = 1] is a Heaviside function. P p [ F = 1] 1 p 0 1 3/9 Hugo Vanneuville (ICJ, Universit´ e Lyon 1) Sharp phase transition for Bargmann-Fock percolation

  16. Sharp transitions for Boolean functions Equip the hypercube {− 1 , 1 } n with P p := ( p δ 1 + (1 − p ) δ − 1 ) ⊗ n F : {− 1 , 1 } n → {− 1 , 1 } increasing If ω ∈ {− 1 , 1 } n , let ω i := ( ω 1 , · · · , ω i − 1 , − ω i , ω i +1 , · · · , ω n ) The influence of i is I p � F ( ω i ) � = F ( ω ) � i ( F )= P p (Ben-Or–Linial, 90) 3/9 Hugo Vanneuville (ICJ, Universit´ e Lyon 1) Sharp phase transition for Bargmann-Fock percolation

  17. Sharp transitions for Boolean functions Equip the hypercube {− 1 , 1 } n with P p := ( p δ 1 + (1 − p ) δ − 1 ) ⊗ n F : {− 1 , 1 } n → {− 1 , 1 } increasing If ω ∈ {− 1 , 1 } n , let ω i := ( ω 1 , · · · , ω i − 1 , − ω i , ω i +1 , · · · , ω n ) The influence of i is I p � F ( ω i ) � = F ( ω ) � i ( F )= P p (Ben-Or–Linial, 90) Theorem (Approximate 0-1 law, Russo, 82) p ∈ [0 , 1] I p i ( F ) ≤ δ For every ε > 0 , there exists δ > 0 s.t. if max 1 ≤ i ≤ n max then p �→ P p [ F = 1] is ε -close to a Heaviside function. P p [ F = 1] 1 p 0 1 3/9 Hugo Vanneuville (ICJ, Universit´ e Lyon 1) Sharp phase transition for Bargmann-Fock percolation

  18. F : {− 1 , 1 } n → {− 1 , 1 } increasing The influence of i is I p i ( F ) = P p [changing ω i modifies F ( ω )] Russo, 82: max i , p I p i ( F ) ≪ 1 ⇒ sharp transition 4/9 Hugo Vanneuville (ICJ, Universit´ e Lyon 1) Sharp phase transition for Bargmann-Fock percolation

  19. F : {− 1 , 1 } n → {− 1 , 1 } increasing The influence of i is I p i ( F ) = P p [changing ω i modifies F ( ω )] Russo, 82: max i , p I p i ( F ) ≪ 1 ⇒ sharp transition Some examples: max i,p I p P p [ F = 1] F i ( F ) Maj : ω �→ sng (Σ n i =1 ω i ) Dict : ω �→ ω 1 max ( Dict, Maj ) 4/9 Hugo Vanneuville (ICJ, Universit´ e Lyon 1) Sharp phase transition for Bargmann-Fock percolation

  20. Russo, 82: max i , p I p i ( F ) ≪ 1 ⇒ sharp transition 5/9 Hugo Vanneuville (ICJ, Universit´ e Lyon 1) Sharp phase transition for Bargmann-Fock percolation

  21. Russo, 82: max i , p I p i ( F ) ≪ 1 ⇒ sharp transition An application to Bernoulli percolation: T R := a triangulation resricted to a 2 R × R 2 R rectangle Let F R : {− 1 , 1 } T R → {− 1 , 1 } be the ± 1 indicator R function of the black crossing of this rectangle 1 = black ; − 1 = white 5/9 Hugo Vanneuville (ICJ, Universit´ e Lyon 1) Sharp phase transition for Bargmann-Fock percolation

  22. Russo, 82: max i , p I p i ( F ) ≪ 1 ⇒ sharp transition An application to Bernoulli percolation: T R := a triangulation resricted to a 2 R × R 2 R rectangle Let F R : {− 1 , 1 } T R → {− 1 , 1 } be the ± 1 indicator R function of the black crossing of this rectangle 1 = black ; − 1 = white 5/9 Hugo Vanneuville (ICJ, Universit´ e Lyon 1) Sharp phase transition for Bargmann-Fock percolation

  23. Russo, 82: max i , p I p i ( F ) ≪ 1 ⇒ sharp transition An application to Bernoulli percolation: T R := a triangulation resricted to a 2 R × R 2 R rectangle Let F R : {− 1 , 1 } T R → {− 1 , 1 } be the ± 1 indicator R function of the black crossing of this rectangle 1 = black ; − 1 = white 5/9 Hugo Vanneuville (ICJ, Universit´ e Lyon 1) Sharp phase transition for Bargmann-Fock percolation

  24. Russo, 82: max i , p I p i ( F ) ≪ 1 ⇒ sharp transition An application to Bernoulli percolation: T R := a triangulation resricted to a 2 R × R 2 R rectangle Let F R : {− 1 , 1 } T R → {− 1 , 1 } be the ± 1 indicator R function of the black crossing of this rectangle 1 = black ; − 1 = white Theorem (Russo, 78; Seymour-Welsh, 78) i , p I p i ( F R ) ≤ R − α P 1 / 2 [ F R = 1] ∈ [ c , 1 − c ] ; max Theorem (Kesten, 80) The critical point of percolation on this lattice is 1 / 2 . 5/9 Hugo Vanneuville (ICJ, Universit´ e Lyon 1) Sharp phase transition for Bargmann-Fock percolation

  25. A quantitative result: the KKL theorem F : {− 1 , 1 } n → {− 1 , 1 } increasing Theorem ( Bourgain, Friedgut, Kahn, Kalai, Katznelson, Linial, Talagrand; 82 → 96) d dp P p [ F = 1] � � �� I p � � P p [ F = 1] (1 − P p [ F = 1]) ≥ c � log max i ( F ) � � i � 6/9 Hugo Vanneuville (ICJ, Universit´ e Lyon 1) Sharp phase transition for Bargmann-Fock percolation

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend