analytic pseudo differential calculus via the bargmann
play

Analytic pseudo-differential calculus via the Bargmann transform - PowerPoint PPT Presentation

Analytic pseudo-differential calculus via the Bargmann transform Joachim Toft Linnus University, V axj o, Sweden, joachim.toft@lnu.se The talk is dedicated to professor Bert-Wolfgang Schulze on his 75th birthday Potsdam, Germany,


  1. Test functions, distributions and expansions Pilipovi´ c spaces Let ÿ x P R d , c α P C . f p x q “ c α h α p x q , (*) α P N d Let s , σ ą 0. 1 2 s for some / every r ą 0. H s p R d q / H 0 , s p R d q “ all f in (*) s.t. | c α | À e ´ r | α | H 5 σ p R d q / H 0 , 5 σ p R d q “ all f in (*) s.t. | c α | À r | α | α ! ´ 1 2 σ for some / every r ą 0. We let H 1 s p R d q / H 1 0 , s p R d q be the set of all f in (*) such that 1 2 s , s P R ` , and | c α | À r | α | α ! ` 1 | c α | À e ` r | α | 2 σ , s “ 5 σ , for every / some r ą 0. . . . and H 1 0 p R d q be the set of all formal expansions (*). J. Toft Analytic Ψdo Potsdam, March 2019 5 / 16

  2. Test functions, distributions and expansions Pilipovi´ c spaces Let ÿ x P R d , c α P C . f p x q “ c α h α p x q , (*) α P N d Let s , σ ą 0. 1 2 s for some / every r ą 0. H s p R d q / H 0 , s p R d q “ all f in (*) s.t. | c α | À e ´ r | α | H 5 σ p R d q / H 0 , 5 σ p R d q “ all f in (*) s.t. | c α | À r | α | α ! ´ 1 2 σ for some / every r ą 0. J. Toft Analytic Ψdo Potsdam, March 2019 5 / 16

  3. Test functions, distributions and expansions Pilipovi´ c spaces Let ÿ x P R d , c α P C . f p x q “ c α h α p x q , (*) α P N d Let s , σ ą 0. 1 2 s for some / every r ą 0. H s p R d q / H 0 , s p R d q “ all f in (*) s.t. | c α | À e ´ r | α | H 5 σ p R d q / H 0 , 5 σ p R d q “ all f in (*) s.t. | c α | À r | α | α ! ´ 1 2 σ for some / every r ą 0. Then H 1 s for s ě 0 and H 1 0 , s for s ą 0 are the duals of H s and H 0 , s under p ¨ , ¨ q L 2 . J. Toft Analytic Ψdo Potsdam, March 2019 5 / 16

  4. Images under the Bargmann transform Bargmann transform, basic definitions J. Toft Analytic Ψdo Potsdam, March 2019 6 / 16

  5. Images under the Bargmann transform Bargmann transform, basic definitions The Bargmann transform (1961): ż ´ 1 ´ ¯ p V d f qp z q “ π ´ d { 4 2 px z , z y ` | y | 2 q ` 2 1 { 2 x z , y y R d exp f p y q dy . d ÿ Here z “ p z 1 , . . . , z d q P C d , x z , w y “ z j w j , p z , w q “ x z , w y . j “ 1 J. Toft Analytic Ψdo Potsdam, March 2019 6 / 16

  6. Images under the Bargmann transform Bargmann transform, basic definitions The Bargmann transform (1961): ż ´ 1 ´ ¯ p V d f qp z q “ π ´ d { 4 2 px z , z y ` | y | 2 q ` 2 1 { 2 x z , y y R d exp f p y q dy . J. Toft Analytic Ψdo Potsdam, March 2019 6 / 16

  7. Images under the Bargmann transform Bargmann transform, basic definitions The Bargmann transform (1961): ż ´ 1 ´ ¯ p V d f qp z q “ π ´ d { 4 2 px z , z y ` | y | 2 q ` 2 1 { 2 x z , y y R d exp f p y q dy . A p C d q is the set of all entire functions in C d J. Toft Analytic Ψdo Potsdam, March 2019 6 / 16

  8. Images under the Bargmann transform Bargmann transform, basic definitions The Bargmann transform (1961): ż ´ 1 ´ ¯ p V d f qp z q “ π ´ d { 4 2 px z , z y ` | y | 2 q ` 2 1 { 2 x z , y y R d exp f p y q dy . A p C d q is the set of all entire functions in C d A 2 p C d q is the Hilbert space of entire analytic functions such that ´ ż ¯ 1 { 2 C d | F p z q| 2 d µ p z q } F } A 2 ” ă 8 . J. Toft Analytic Ψdo Potsdam, March 2019 6 / 16

  9. Images under the Bargmann transform Bargmann transform, basic definitions The Bargmann transform (1961): ż ´ 1 ´ ¯ p V d f qp z q “ π ´ d { 4 2 px z , z y ` | y | 2 q ` 2 1 { 2 x z , y y R d exp f p y q dy . A p C d q is the set of all entire functions in C d A 2 p C d q is the Hilbert space of entire analytic functions such that ´ ż ¯ 1 { 2 C d | F p z q| 2 d µ p z q } F } A 2 ” ă 8 . d µ p z q “ π ´ d e ´| z | 2 d λ p z q , d λ p z q Here where is the Lebesgue measure on C d . J. Toft Analytic Ψdo Potsdam, March 2019 6 / 16

  10. Images under the Bargmann transform Bargmann transform, basic definitions The Bargmann transform (1961): ż ´ 1 ´ ¯ p V d f qp z q “ π ´ d { 4 2 px z , z y ` | y | 2 q ` 2 1 { 2 x z , y y R d exp f p y q dy . A p C d q is the set of all entire functions in C d A 2 p C d q is the Hilbert space of entire analytic functions such that ´ ż ¯ 1 { 2 C d | F p z q| 2 d µ p z q } F } A 2 ” ă 8 . d µ p z q “ π ´ d e ´| z | 2 d λ p z q , d λ p z q Here where is the Lebesgue measure on C d . ż A 2 -scalar product: p F , G q A 2 “ C d F p z q G p z q d µ p z q . J. Toft Analytic Ψdo Potsdam, March 2019 6 / 16

  11. Images under the Bargmann transform V. Bargmann 1961 - Mapping properties He proved: J. Toft Analytic Ψdo Potsdam, March 2019 7 / 16

  12. Images under the Bargmann transform V. Bargmann 1961 - Mapping properties He proved: V d is a bijective isometry from L 2 p R d q to A 2 p C d q . J. Toft Analytic Ψdo Potsdam, March 2019 7 / 16

  13. Images under the Bargmann transform V. Bargmann 1961 - Mapping properties He proved: V d is a bijective isometry from L 2 p R d q to A 2 p C d q . z α V d h α “ e α p z q ” p α ! q 1 { 2 . J. Toft Analytic Ψdo Potsdam, March 2019 7 / 16

  14. Images under the Bargmann transform V. Bargmann 1961 - Mapping properties He proved: V d is a bijective isometry from L 2 p R d q to A 2 p C d q . z α Hence V d maps ON-basis t h α u in L 2 into V d h α “ e α p z q ” p α ! q 1 { 2 . z α " * in A 2 . the ON-basis p α ! q 1 { 2 J. Toft Analytic Ψdo Potsdam, March 2019 7 / 16

  15. Images under the Bargmann transform V. Bargmann 1961 - Mapping properties He proved: V d is a bijective isometry from L 2 p R d q to A 2 p C d q . z α Hence V d maps ON-basis t h α u in L 2 into V d h α “ e α p z q ” p α ! q 1 { 2 . z α " * in A 2 . the ON-basis p α ! q 1 { 2 Reproducing kernel: ż C d e p z , w q F p w q d µ p w q , p Π A F qp z q “ F admissible. Then d µ p z q “ π ´ d e ´| z | 2 d λ p z q . F P A 2 , p Π A F qp z q “ F p z q , J. Toft Analytic Ψdo Potsdam, March 2019 7 / 16

  16. Images under the Bargmann transform Spaces of power series expansions In the most general situation we consider the power series expansions z α ÿ z P C d , c α P C , e α p z q “ F p z q “ c α e α p z q , (*) p α ! q 1 { 2 . α P N d J. Toft Analytic Ψdo Potsdam, March 2019 8 / 16

  17. Images under the Bargmann transform Spaces of power series expansions In the most general situation we consider the power series expansions z α ÿ z P C d , c α P C , e α p z q “ F p z q “ c α e α p z q , (*) p α ! q 1 { 2 . α P N d Smaller spaces: A 0 p R d q , the set of all analytic polynomials F p z q in (*) J. Toft Analytic Ψdo Potsdam, March 2019 8 / 16

  18. Images under the Bargmann transform Spaces of power series expansions In the most general situation we consider the power series expansions z α ÿ z P C d , c α P C , e α p z q “ F p z q “ c α e α p z q , (*) p α ! q 1 { 2 . α P N d Smaller spaces: Larger spaces: A 0 p R d q , the set of all analytic A 1 0 p C d q , the set of all formal power polynomials F p z q in (*) series F p z q in (*) J. Toft Analytic Ψdo Potsdam, March 2019 8 / 16

  19. Images under the Bargmann transform Spaces of power series expansions In the most general situation we consider the power series expansions z α ÿ z P C d , c α P C , e α p z q “ F p z q “ c α e α p z q , (*) p α ! q 1 { 2 . α P N d Smaller spaces: Larger spaces: A 0 p R d q , the set of all analytic A 1 0 p C d q , the set of all formal power polynomials F p z q in (*) series F p z q in (*) (usually denoted by C rr z 1 , . . . , z d ss ) J. Toft Analytic Ψdo Potsdam, March 2019 8 / 16

  20. Images under the Bargmann transform Spaces of power series expansions In the most general situation we consider the power series expansions z α ÿ z P C d , c α P C , e α p z q “ F p z q “ c α e α p z q , (*) p α ! q 1 { 2 . α P N d Smaller spaces: Larger spaces: A 0 p R d q , the set of all analytic A 1 0 p C d q , the set of all formal power polynomials F p z q in (*) series F p z q in (*) J. Toft Analytic Ψdo Potsdam, March 2019 8 / 16

  21. Images under the Bargmann transform Spaces of power series expansions In the most general situation we consider the power series expansions z α ÿ z P C d , c α P C , e α p z q “ F p z q “ c α e α p z q , (*) p α ! q 1 { 2 . α P N d Smaller spaces: Larger spaces: A 0 p R d q , the set of all analytic A 1 0 p C d q , the set of all formal power polynomials F p z q in (*) series F p z q in (*) For s P R 5 , let A s p C d q ( A 0 , s p C d q ) be For s P R 5 , let A 1 s p C d q ( A 1 0 , s p C d q ) the set of all series expansions F p z q the set of all series expansions F p z q in (*) such that in (*) such that $ 1 $ 1 2 s , 2 s , e ´ r | α | e r | α | s P R ` s P R ` & & | c α | À | c α | À r | α | α ! ´ 1 1 r | α | α ! 2 σ , s “ 5 σ 2 σ , s “ 5 σ % % for some (every) r ą 0. for every (some) r ą 0. J. Toft Analytic Ψdo Potsdam, March 2019 8 / 16

  22. Images under the Bargmann transform Bargmann transform on Hermite series expansions J. Toft Analytic Ψdo Potsdam, March 2019 9 / 16

  23. Images under the Bargmann transform Bargmann transform on Hermite series expansions Recall that V d h α “ e α . J. Toft Analytic Ψdo Potsdam, March 2019 9 / 16

  24. Images under the Bargmann transform Bargmann transform on Hermite series expansions Recall that V d h α “ e α . ÿ ÿ For any f “ c α h α , let V d f “ c α e α . α α J. Toft Analytic Ψdo Potsdam, March 2019 9 / 16

  25. Images under the Bargmann transform Bargmann transform on Hermite series expansions Recall that V d h α “ e α . ÿ ÿ For any f “ c α h α , let V d f “ c α e α . α α By the definitions it follows that V d : H 0 , s p R d q Ñ A 0 , s p C d q , V d : H s p R d q Ñ A s p C d q , V d : H 1 s p R d q Ñ A 1 s p C d q , V d : H 1 0 , s p R d q Ñ A 1 0 , s p C d q are bijective. J. Toft Analytic Ψdo Potsdam, March 2019 9 / 16

  26. Images under the Bargmann transform Characterizations of certain spaces of power series J. Toft Analytic Ψdo Potsdam, March 2019 10 / 16

  27. Images under the Bargmann transform Characterizations of certain spaces of power series ÿ Any entire function F is equal to a power series expansion c α e α α J. Toft Analytic Ψdo Potsdam, March 2019 10 / 16

  28. Images under the Bargmann transform Characterizations of certain spaces of power series ÿ Any entire function F is equal to a power series expansion c α e α α such that | c α | À r | α | p α ! q 1 { 2 , for every r ą 0. J. Toft Analytic Ψdo Potsdam, March 2019 10 / 16

  29. Images under the Bargmann transform Characterizations of certain spaces of power series ÿ Any entire function F is equal to a power series expansion c α e α α such that | c α | À r | α | p α ! q 1 { 2 , for every r ą 0. This implies A 1 5 1 p C d q “ A p C d q . J. Toft Analytic Ψdo Potsdam, March 2019 10 / 16

  30. Images under the Bargmann transform Characterizations of certain spaces of power series ÿ Any entire function F is equal to a power series expansion c α e α α such that | c α | À r | α | p α ! q 1 { 2 , for every r ą 0. This implies A 1 5 1 p C d q “ A p C d q . From the definitions it now follows for s ě 1 2 and s 0 ă 1 2 : A 0 , s 0 p C d q Ď A s 0 p C d q Ď A 0 , s p C d q Ď A s p C d q Ď A 1 s p C d q Ď A 1 0 , s p C d q Ď A p C d q Ď A 1 s 0 p C d q Ď A 1 0 , s 0 p C d q J. Toft Analytic Ψdo Potsdam, March 2019 10 / 16

  31. Images under the Bargmann transform Characterizations of certain spaces of power series ÿ Any entire function F is equal to a power series expansion c α e α α such that | c α | À r | α | p α ! q 1 { 2 , for every r ą 0. This implies A 1 5 1 p C d q “ A p C d q . From the definitions it now follows for s ě 1 2 and s 0 ă 1 2 : A 0 , s 0 p C d q Ď A s 0 p C d q Ď A 0 , s p C d q Ď A s p C d q Ď A 1 s p C d q Ď A 1 0 , s p C d q Ď A p C d q Ď A 1 s 0 p C d q Ď A 1 0 , s 0 p C d q What about those spaces which are contained in A p C d q ?? J. Toft Analytic Ψdo Potsdam, March 2019 10 / 16

  32. Images under the Bargmann transform s 0 ă 1 s ě 1 (Recall: s 0 ă 5 σ ă 1 For 2 , 2 , x z y “ 1 ` | z | 2 ): The tiny planets (smaller than Gelfand-Shilov): , , J. Toft Analytic Ψdo Potsdam, March 2019 11 / 16

  33. Images under the Bargmann transform s 0 ă 1 s ě 1 (Recall: s 0 ă 5 σ ă 1 For 2 , 2 , x z y “ 1 ` | z | 2 ): The tiny planets (smaller than Gelfand-Shilov): 1 1 ´ 2 s 0 , for every / some r ą 0 u , A 0 , s 0 { A s 0 “ t F P A ; | F p z q| À e r p log x z yq 2 σ σ ` 1 , for every / some r ą 0 u , A 0 , 5 σ { A 5 σ “ t F P A ; | F p z q| À e r | z | 2 “ t F P A ; | F p z q| À e r | z | 2 , for every r ą 0 u , A 0 , 1 , J. Toft Analytic Ψdo Potsdam, March 2019 11 / 16

  34. Images under the Bargmann transform s 0 ă 1 s ě 1 (Recall: s 0 ă 5 σ ă 1 For 2 , 2 , x z y “ 1 ` | z | 2 ): The tiny planets (smaller than Gelfand-Shilov): 1 1 ´ 2 s 0 , for every / some r ą 0 u , A 0 , s 0 { A s 0 “ t F P A ; | F p z q| À e r p log x z yq 2 σ σ ` 1 , for every / some r ą 0 u , A 0 , 5 σ { A 5 σ “ t F P A ; | F p z q| À e r | z | 2 “ t F P A ; | F p z q| À e r | z | 2 , for every r ą 0 u , A 0 , 1 The Gelfand-Shilov world: s , for every / some r ą 0 u , s ‰ 1 | z | 2 1 2 ´ r | z | A 0 , s { A s “ t F P A ; | F p z q| À e 2 , | z | 2 1 s , for every / some r ą 0 u , A 1 s { A 1 2 ` r | z | 0 , s “ t F P A ; | F p z q| À e J. Toft Analytic Ψdo Potsdam, March 2019 11 / 16

  35. Images under the Bargmann transform s 0 ă 1 s ě 1 (Recall: s 0 ă 5 σ ă 1 For 2 , 2 , x z y “ 1 ` | z | 2 ): The tiny planets (smaller than Gelfand-Shilov): 1 1 ´ 2 s 0 , for every / some r ą 0 u , A 0 , s 0 { A s 0 “ t F P A ; | F p z q| À e r p log x z yq 2 σ σ ` 1 , for every / some r ą 0 u , A 0 , 5 σ { A 5 σ “ t F P A ; | F p z q| À e r | z | 2 “ t F P A ; | F p z q| À e r | z | 2 , for every r ą 0 u , A 0 , 1 The Gelfand-Shilov world: s , for every / some r ą 0 u , s ‰ 1 | z | 2 1 2 ´ r | z | A 0 , s { A s “ t F P A ; | F p z q| À e 2 , | z | 2 1 s , for every / some r ą 0 u , A 1 s { A 1 2 ` r | z | 0 , s “ t F P A ; | F p z q| À e Beyond Gelfand-Shilov life: 2 “ t F P A ; | F p z q| À e r | z | 2 , for some r ą 0 u , A 1 0 , 1 2 σ σ ´ 1 , for every / some r ą 0 u , σ ą 1 , A 1 5 σ { A 1 0 , 5 σ “ t F P A ; | F p z q| À e r | z | A 1 A 1 ď p“ A p C d qq , 5 1 “ A 0 , 5 1 “ A p B R p 0 qq . R ą 0 J. Toft Analytic Ψdo Potsdam, March 2019 11 / 16

  36. Analytic pseudo-differential and integral operators Analytic pseudo-differential and integral operators Suppose a p z , w q and K p z , w q are suitable functions, analytic in z P C d . J. Toft Analytic Ψdo Potsdam, March 2019 12 / 16

  37. Analytic pseudo-differential and integral operators Analytic pseudo-differential and integral operators Suppose a p z , w q and K p z , w q are suitable functions, analytic in z P C d . 1 The analytic pseudo-differential operator, Op V p a q , is defined by ż C d a p z , w q F p w q e p z , w q d µ p w q , F P A 0 p C d q . p Op V p a q F qp z q “ J. Toft Analytic Ψdo Potsdam, March 2019 12 / 16

  38. Analytic pseudo-differential and integral operators Analytic pseudo-differential and integral operators Suppose a p z , w q and K p z , w q are suitable functions, analytic in z P C d . 1 The analytic pseudo-differential operator, Op V p a q , is defined by ż C d a p z , w q F p w q e p z , w q d µ p w q , F P A 0 p C d q . p Op V p a q F qp z q “ 2 The (analytic) kernel operator, T K , is defined by ż F P A 0 p C d q . p T K F qp z q “ C d K p z , w q F p w q d µ p w q , J. Toft Analytic Ψdo Potsdam, March 2019 12 / 16

  39. Analytic pseudo-differential and integral operators Analytic pseudo-differential and integral operators Suppose a p z , w q and K p z , w q are suitable functions, analytic in z P C d . 1 The analytic pseudo-differential operator, Op V p a q , is defined by ż C d a p z , w q F p w q e p z , w q d µ p w q , F P A 0 p C d q . p Op V p a q F qp z q “ 2 The (analytic) kernel operator, T K , is defined by ż F P A 0 p C d q . p T K F qp z q “ C d K p z , w q F p w q d µ p w q , Examples and remarks: J. Toft Analytic Ψdo Potsdam, March 2019 12 / 16

  40. Analytic pseudo-differential and integral operators Analytic pseudo-differential and integral operators Suppose a p z , w q and K p z , w q are suitable functions, analytic in z P C d . 1 The analytic pseudo-differential operator, Op V p a q , is defined by ż C d a p z , w q F p w q e p z , w q d µ p w q , F P A 0 p C d q . p Op V p a q F qp z q “ 2 The (analytic) kernel operator, T K , is defined by ż F P A 0 p C d q . p T K F qp z q “ C d K p z , w q F p w q d µ p w q , Examples and remarks: We have T K “ Op V p a q when K p z , w q “ a p z , w q e p z , w q . J. Toft Analytic Ψdo Potsdam, March 2019 12 / 16

  41. Analytic pseudo-differential and integral operators Analytic pseudo-differential and integral operators Suppose a p z , w q and K p z , w q are suitable functions, analytic in z P C d . 1 The analytic pseudo-differential operator, Op V p a q , is defined by ż C d a p z , w q F p w q e p z , w q d µ p w q , F P A 0 p C d q . p Op V p a q F qp z q “ 2 The (analytic) kernel operator, T K , is defined by ż F P A 0 p C d q . p T K F qp z q “ C d K p z , w q F p w q d µ p w q , Examples and remarks: J. Toft Analytic Ψdo Potsdam, March 2019 12 / 16

  42. Analytic pseudo-differential and integral operators Analytic pseudo-differential and integral operators Suppose a p z , w q and K p z , w q are suitable functions, analytic in z P C d . 1 The analytic pseudo-differential operator, Op V p a q , is defined by ż C d a p z , w q F p w q e p z , w q d µ p w q , F P A 0 p C d q . p Op V p a q F qp z q “ 2 The (analytic) kernel operator, T K , is defined by ż F P A 0 p C d q . p T K F qp z q “ C d K p z , w q F p w q d µ p w q , Examples and remarks: If a p z , w q “ 1, then we regain the reproducing kernel: Op V p a q F p z q “ p Π A F qp z q “ F p z q . J. Toft Analytic Ψdo Potsdam, March 2019 12 / 16

  43. Analytic pseudo-differential and integral operators Analytic pseudo-differential and integral operators Suppose a p z , w q and K p z , w q are suitable functions, analytic in z P C d . 1 The analytic pseudo-differential operator, Op V p a q , is defined by ż C d a p z , w q F p w q e p z , w q d µ p w q , F P A 0 p C d q . p Op V p a q F qp z q “ 2 The (analytic) kernel operator, T K , is defined by ż F P A 0 p C d q . p T K F qp z q “ C d K p z , w q F p w q d µ p w q , Examples and remarks: J. Toft Analytic Ψdo Potsdam, March 2019 12 / 16

  44. Analytic pseudo-differential and integral operators Analytic pseudo-differential and integral operators Suppose a p z , w q and K p z , w q are suitable functions, analytic in z P C d . 1 The analytic pseudo-differential operator, Op V p a q , is defined by ż C d a p z , w q F p w q e p z , w q d µ p w q , F P A 0 p C d q . p Op V p a q F qp z q “ 2 The (analytic) kernel operator, T K , is defined by ż F P A 0 p C d q . p T K F qp z q “ C d K p z , w q F p w q d µ p w q , Examples and remarks: ÿ ÿ a α p z qpB α a α p z q w α . Op V p a q F p z q “ z F qp z q , a p z , w q “ | α |ď N | α |ď N J. Toft Analytic Ψdo Potsdam, March 2019 12 / 16

  45. Analytic pseudo-differential and integral operators Analytic pseudo-differential and integral operators Suppose a p z , w q and K p z , w q are suitable functions, analytic in z P C d . 1 The analytic pseudo-differential operator, Op V p a q , is defined by ż C d a p z , w q F p w q e p z , w q d µ p w q , F P A 0 p C d q . p Op V p a q F qp z q “ 2 The (analytic) kernel operator, T K , is defined by ż F P A 0 p C d q . p T K F qp z q “ C d K p z , w q F p w q d µ p w q , Examples and remarks: J. Toft Analytic Ψdo Potsdam, March 2019 12 / 16

  46. Analytic pseudo-differential and integral operators Analytic pseudo-differential and integral operators Suppose a p z , w q and K p z , w q are suitable functions, analytic in z P C d . 1 The analytic pseudo-differential operator, Op V p a q , is defined by ż C d a p z , w q F p w q e p z , w q d µ p w q , F P A 0 p C d q . p Op V p a q F qp z q “ 2 The (analytic) kernel operator, T K , is defined by ż F P A 0 p C d q . p T K F qp z q “ C d K p z , w q F p w q d µ p w q , Examples and remarks: If a p z , w q is analytic, then p Op V p a q F qp z q “ a p z , z q F p z q . J. Toft Analytic Ψdo Potsdam, March 2019 12 / 16

  47. Analytic pseudo-differential and integral operators Analytic pseudo-differential and integral operators Suppose a p z , w q and K p z , w q are suitable functions, analytic in z P C d . 1 The analytic pseudo-differential operator, Op V p a q , is defined by ż C d a p z , w q F p w q e p z , w q d µ p w q , F P A 0 p C d q . p Op V p a q F qp z q “ 2 The (analytic) kernel operator, T K , is defined by ż F P A 0 p C d q . p T K F qp z q “ C d K p z , w q F p w q d µ p w q , Examples and remarks: J. Toft Analytic Ψdo Potsdam, March 2019 12 / 16

  48. Analytic pseudo-differential and integral operators Analytic pseudo-differential and integral operators Suppose a p z , w q and K p z , w q are suitable functions, analytic in z P C d . 1 The analytic pseudo-differential operator, Op V p a q , is defined by ż C d a p z , w q F p w q e p z , w q d µ p w q , F P A 0 p C d q . p Op V p a q F qp z q “ 2 The (analytic) kernel operator, T K , is defined by ż F P A 0 p C d q . p T K F qp z q “ C d K p z , w q F p w q d µ p w q , Examples and remarks: If χ is the characteristic function of a polydisc and a p z , w q “ χ p w q , then Op V p a q is bijective between suitable A s p C d q spaces. J. Toft Analytic Ψdo Potsdam, March 2019 12 / 16

  49. Analytic pseudo-differential and integral operators Analytic pseudo-differential and integral operators Suppose a p z , w q and K p z , w q are suitable functions, analytic in z P C d . 1 The analytic pseudo-differential operator, Op V p a q , is defined by ż C d a p z , w q F p w q e p z , w q d µ p w q , F P A 0 p C d q . p Op V p a q F qp z q “ 2 The (analytic) kernel operator, T K , is defined by ż F P A 0 p C d q . p T K F qp z q “ C d K p z , w q F p w q d µ p w q , Examples and remarks: If χ is the characteristic function of a polydisc and a p z , w q “ χ p w q , then Op V p a q is bijective between suitable A s p C d q spaces. Some sorts of analytic Paley-Wiener properties Nabizadeh-Pfeuffer-T. (2018). J. Toft Analytic Ψdo Potsdam, March 2019 12 / 16

  50. Analytic pseudo-differential and integral operators Kernel theorems and related mapping properties C d a p z , w q F p w q e p z , w q d µ p w q , C d K p z , w q F p w q d µ p w q . ş ş p Op V p a q F qp z q “ p T K F qp z q “ J. Toft Analytic Ψdo Potsdam, March 2019 13 / 16

  51. Analytic pseudo-differential and integral operators Kernel theorems and related mapping properties C d a p z , w q F p w q e p z , w q d µ p w q , C d K p z , w q F p w q d µ p w q . ş ş p Op V p a q F qp z q “ p T K F qp z q “ In what follows we let A 1 s p C 2 d q “ t K p z , w q ; p z , w q ÞÑ K p z , w q P A 1 s p C 2 d q u , � and similarly for other spaces. J. Toft Analytic Ψdo Potsdam, March 2019 13 / 16

  52. Analytic pseudo-differential and integral operators Kernel theorems and related mapping properties C d a p z , w q F p w q e p z , w q d µ p w q , C d K p z , w q F p w q d µ p w q . ş ş p Op V p a q F qp z q “ p T K F qp z q “ In what follows we let A 1 s p C 2 d q “ t K p z , w q ; p z , w q ÞÑ K p z , w q P A 1 s p C 2 d q u , � and similarly for other spaces. We also let L p V 1 , V 2 q be the set of all linear continuous mappings from the topological vector space V 1 to the topological vector space V 2 . J. Toft Analytic Ψdo Potsdam, March 2019 13 / 16

  53. Analytic pseudo-differential and integral operators Kernel theorems and related mapping properties C d a p z , w q F p w q e p z , w q d µ p w q , C d K p z , w q F p w q d µ p w q . ş ş p Op V p a q F qp z q “ p T K F qp z q “ In what follows we let A 1 s p C 2 d q “ t K p z , w q ; p z , w q ÞÑ K p z , w q P A 1 s p C 2 d q u , � and similarly for other spaces. J. Toft Analytic Ψdo Potsdam, March 2019 13 / 16

  54. Analytic pseudo-differential and integral operators Kernel theorems and related mapping properties C d a p z , w q F p w q e p z , w q d µ p w q , C d K p z , w q F p w q d µ p w q . ş ş p Op V p a q F qp z q “ p T K F qp z q “ In what follows we let A 1 s p C 2 d q “ t K p z , w q ; p z , w q ÞÑ K p z , w q P A 1 s p C 2 d q u , � and similarly for other spaces. Thm. Teofanov-T. 2019, Chen-Signahl-T. 2017 Let s 1 P R 5 and s 2 P R 5 . The map K ÞÑ T K is bijective J. Toft Analytic Ψdo Potsdam, March 2019 13 / 16

  55. Analytic pseudo-differential and integral operators Kernel theorems and related mapping properties C d a p z , w q F p w q e p z , w q d µ p w q , C d K p z , w q F p w q d µ p w q . ş ş p Op V p a q F qp z q “ p T K F qp z q “ In what follows we let A 1 s p C 2 d q “ t K p z , w q ; p z , w q ÞÑ K p z , w q P A 1 s p C 2 d q u , � and similarly for other spaces. Thm. Teofanov-T. 2019, Chen-Signahl-T. 2017 Let s 1 P R 5 and s 2 P R 5 . The map K ÞÑ T K is bijective A 0 , s 1 p C 2 d q L p A 1 0 , s 1 p C d q , A 0 , s 1 p C d qq , � from to and A 1 0 , s 1 p C 2 d q L p A 0 , s 1 p C d q , A 1 � 0 , s 1 p C d qq . from to J. Toft Analytic Ψdo Potsdam, March 2019 13 / 16

  56. Analytic pseudo-differential and integral operators Kernel theorems and related mapping properties C d a p z , w q F p w q e p z , w q d µ p w q , C d K p z , w q F p w q d µ p w q . ş ş p Op V p a q F qp z q “ p T K F qp z q “ In what follows we let A 1 s p C 2 d q “ t K p z , w q ; p z , w q ÞÑ K p z , w q P A 1 s p C 2 d q u , � and similarly for other spaces. Thm. Teofanov-T. 2019, Chen-Signahl-T. 2017 Let s 1 P R 5 and s 2 P R 5 . The map K ÞÑ T K is bijective A 0 , s 1 p C 2 d q L p A 1 0 , s 1 p C d q , A 0 , s 1 p C d qq , � from to and A 1 0 , s 1 p C 2 d q L p A 0 , s 1 p C d q , A 1 � 0 , s 1 p C d qq . from to A s 2 p C 2 d q L p A 1 � s 2 p C d q , A s 2 p C d qq , from to and A 1 s 2 p C 2 d q L p A s 2 p C d q , A 1 s 2 p C d qq . � from to J. Toft Analytic Ψdo Potsdam, March 2019 13 / 16

  57. Analytic pseudo-differential and integral operators Kernel theorems and related mapping properties C d a p z , w q F p w q e p z , w q d µ p w q , C d K p z , w q F p w q d µ p w q . ş ş p Op V p a q F qp z q “ p T K F qp z q “ L p A 1 L p A s 2 , A 1 A 1 s 2 , A s 2 q “ t T K ; K P A s 2 u , � s 2 q “ t T K ; K P � s 2 u etc. . . J. Toft Analytic Ψdo Potsdam, March 2019 13 / 16

  58. Analytic pseudo-differential and integral operators Kernel theorems and related mapping properties C d a p z , w q F p w q e p z , w q d µ p w q , C d K p z , w q F p w q d µ p w q . ş ş p Op V p a q F qp z q “ p T K F qp z q “ L p A 1 L p A s 2 , A 1 A 1 s 2 , A s 2 q “ t T K ; K P A s 2 u , � s 2 q “ t T K ; K P � s 2 u etc. . . Thm. Teofanov-T. (2019) Let t P C , s 1 P R 5 , s 1 ď 1 2 , and s 2 P R 5 , s 2 ă 1 2 . Then K p z , w q ÞÑ K p z , w q e t p z , w q is a continuous bijection on A 1 0 , s 1 p C 2 d q A 1 s 2 p C 2 d q . � � and on J. Toft Analytic Ψdo Potsdam, March 2019 13 / 16

  59. Analytic pseudo-differential and integral operators Kernel theorems and related mapping properties C d a p z , w q F p w q e p z , w q d µ p w q , C d K p z , w q F p w q d µ p w q . ş ş p Op V p a q F qp z q “ p T K F qp z q “ L p A 1 L p A s 2 , A 1 A 1 s 2 , A s 2 q “ t T K ; K P A s 2 u , � s 2 q “ t T K ; K P � s 2 u etc. . . Thm. Teofanov-T. (2019) Let t P C , s 1 P R 5 , s 1 ď 1 2 , and s 2 P R 5 , s 2 ă 1 2 . Then K p z , w q ÞÑ K p z , w q e t p z , w q is a continuous bijection on A 1 0 , s 1 p C 2 d q A 1 s 2 p C 2 d q . � � and on By combining this with the earlier kernel theorems: J. Toft Analytic Ψdo Potsdam, March 2019 13 / 16

  60. Analytic pseudo-differential and integral operators Kernel theorems and related mapping properties C d a p z , w q F p w q e p z , w q d µ p w q , C d K p z , w q F p w q d µ p w q . ş ş p Op V p a q F qp z q “ p T K F qp z q “ L p A 1 L p A s 2 , A 1 A 1 s 2 , A s 2 q “ t T K ; K P A s 2 u , � s 2 q “ t T K ; K P � s 2 u etc. . . Thm. Teofanov-T. (2019) Let t P C , s 1 P R 5 , s 1 ď 1 2 , and s 2 P R 5 , s 2 ă 1 2 . Then K p z , w q ÞÑ K p z , w q e t p z , w q is a continuous bijection on A 1 0 , s 1 p C 2 d q A 1 s 2 p C 2 d q . � � and on J. Toft Analytic Ψdo Potsdam, March 2019 13 / 16

  61. Analytic pseudo-differential and integral operators Kernel theorems and related mapping properties C d a p z , w q F p w q e p z , w q d µ p w q , C d K p z , w q F p w q d µ p w q . ş ş p Op V p a q F qp z q “ p T K F qp z q “ L p A 1 L p A s 2 , A 1 A 1 s 2 , A s 2 q “ t T K ; K P A s 2 u , � s 2 q “ t T K ; K P � s 2 u etc. . . Thm. Teofanov-T. (2019) Let t P C , s 1 P R 5 , s 1 ď 1 2 , and s 2 P R 5 , s 2 ă 1 2 . Then K p z , w q ÞÑ K p z , w q e t p z , w q is a continuous bijection on A 1 0 , s 1 p C 2 d q A 1 s 2 p C 2 d q . � � and on Thm. Teofanov-T. (2019) Let s 1 P R 5 , s 1 ď 1 2 , and s 2 P R 5 , s 2 ă 1 2 . Then L p A 0 , s 1 p C d q , A 1 A 1 0 , s 1 p C 2 d q u . 0 , s 1 p C d qq “ t Op V p a q ; a P � L p A s 2 p C d q , A 1 A 1 s 2 p C 2 d q u . s 2 p C d qq “ t Op V p a q ; a P � J. Toft Analytic Ψdo Potsdam, March 2019 13 / 16

  62. Analytic pseudo-differential and integral operators Analytic Ψdo with Lebesgue conditions on their symbols Let L p p C d q — L p p R 2 d q be the mixed Lebesgue space with respect to p P r 1 , 8s 2 d , J. Toft Analytic Ψdo Potsdam, March 2019 14 / 16

  63. Analytic pseudo-differential and integral operators Analytic Ψdo with Lebesgue conditions on their symbols Let L p p C d q — L p p R 2 d q be the mixed Lebesgue space with respect to p P r 1 , 8s 2 d , ω 0 be a weight on C d J. Toft Analytic Ψdo Potsdam, March 2019 14 / 16

  64. Analytic pseudo-differential and integral operators Analytic Ψdo with Lebesgue conditions on their symbols Let L p p C d q — L p p R 2 d q be the mixed Lebesgue space with respect to p P r 1 , 8s 2 d , ω 0 be a weight on C d that is, ω 0 ą 0 and ω 0 , 1 { ω 0 P L 8 loc p C d q . J. Toft Analytic Ψdo Potsdam, March 2019 14 / 16

  65. Analytic pseudo-differential and integral operators Analytic Ψdo with Lebesgue conditions on their symbols Let L p p C d q — L p p R 2 d q be the mixed Lebesgue space with respect to p P r 1 , 8s 2 d , ω 0 be a weight on C d J. Toft Analytic Ψdo Potsdam, March 2019 14 / 16

  66. Analytic pseudo-differential and integral operators Analytic Ψdo with Lebesgue conditions on their symbols Let L p p C d q — L p p R 2 d q be the mixed Lebesgue space with respect to p P r 1 , 8s 2 d , ω 0 be a weight on C d and let ω be a weight on C 2 d . J. Toft Analytic Ψdo Potsdam, March 2019 14 / 16

  67. Analytic pseudo-differential and integral operators Analytic Ψdo with Lebesgue conditions on their symbols Let L p p C d q — L p p R 2 d q be the mixed Lebesgue space with respect to p P r 1 , 8s 2 d , ω 0 be a weight on C d and let ω be a weight on C 2 d . ? 2 ¨| z | 2 ω 0 p Let B p p ω 0 q p C d q “ t F ; F p z q e ´ 1 2 ¨ z q P L p p C d q u . J. Toft Analytic Ψdo Potsdam, March 2019 14 / 16

  68. Analytic pseudo-differential and integral operators Analytic Ψdo with Lebesgue conditions on their symbols Let L p p C d q — L p p R 2 d q be the mixed Lebesgue space with respect to p P r 1 , 8s 2 d , ω 0 be a weight on C d and let ω be a weight on C 2 d . ? 2 ¨| z | 2 ω 0 p Let B p p ω 0 q p C d q “ t F ; F p z q e ´ 1 2 ¨ z q P L p p C d q u . Let A p p ω 0 q p C d q “ B p p ω 0 q p C d q X A p C d q . J. Toft Analytic Ψdo Potsdam, March 2019 14 / 16

  69. Analytic pseudo-differential and integral operators Analytic Ψdo with Lebesgue conditions on their symbols Let L p p C d q — L p p R 2 d q be the mixed Lebesgue space with respect to p P r 1 , 8s 2 d , ω 0 be a weight on C d and let ω be a weight on C 2 d . ? 2 ¨| z | 2 ω 0 p Let B p p ω 0 q p C d q “ t F ; F p z q e ´ 1 2 ¨ z q P L p p C d q u . Let A p p ω 0 q p C d q “ B p If instead p P r 1 , 8s 4 d , let p ω 0 q p C d q X A p C d q . A p p ω q p C 2 d q “ t All K ; p z , w q ÞÑ K p z , w q P A p p ω q p C 2 d q u . � J. Toft Analytic Ψdo Potsdam, March 2019 14 / 16

  70. Analytic pseudo-differential and integral operators Analytic Ψdo with Lebesgue conditions on their symbols Let L p p C d q — L p p R 2 d q be the mixed Lebesgue space with respect to p P r 1 , 8s 2 d , ω 0 be a weight on C d and let ω be a weight on C 2 d . ? 2 ¨| z | 2 ω 0 p Let B p p ω 0 q p C d q “ t F ; F p z q e ´ 1 2 ¨ z q P L p p C d q u . Let A p p ω 0 q p C d q “ B p If instead p P r 1 , 8s 4 d , let p ω 0 q p C d q X A p C d q . A p p ω q p C 2 d q “ t All K ; p z , w q ÞÑ K p z , w q P A p p ω q p C 2 d q u . � Recently, results of the following type appeared J. Toft Analytic Ψdo Potsdam, March 2019 14 / 16

  71. Analytic pseudo-differential and integral operators Analytic Ψdo with Lebesgue conditions on their symbols Let L p p C d q — L p p R 2 d q be the mixed Lebesgue space with respect to p P r 1 , 8s 2 d , ω 0 be a weight on C d and let ω be a weight on C 2 d . ? 2 ¨| z | 2 ω 0 p Let B p p ω 0 q p C d q “ t F ; F p z q e ´ 1 2 ¨ z q P L p p C d q u . Let A p p ω 0 q p C d q “ B p If instead p P r 1 , 8s 4 d , let p ω 0 q p C d q X A p C d q . A p p ω q p C 2 d q “ t All K ; p z , w q ÞÑ K p z , w q P A p p ω q p C 2 d q u . � J. Toft Analytic Ψdo Potsdam, March 2019 14 / 16

  72. Analytic pseudo-differential and integral operators Analytic Ψdo with Lebesgue conditions on their symbols Let L p p C d q — L p p R 2 d q be the mixed Lebesgue space with respect to p P r 1 , 8s 2 d , ω 0 be a weight on C d and let ω be a weight on C 2 d . ? 2 ¨| z | 2 ω 0 p Let B p p ω 0 q p C d q “ t F ; F p z q e ´ 1 2 ¨ z q P L p p C d q u . Let A p p ω 0 q p C d q “ B p If instead p P r 1 , 8s 4 d , let p ω 0 q p C d q X A p C d q . A p p ω q p C 2 d q “ t All K ; p z , w q ÞÑ K p z , w q P A p p ω q p C 2 d q u . � Thm. Teofanov-T. (2019) A p C 2 d q satisfies Suppose ω and K P � ? ? G K ,ω p z , w q “ e ´ 1 2 p| z | 2 `| w | 2 q K p z , w q¨ ω p G K ,ω p z ` w , z q P L p , q p C 2 d q , 2 z , 2 w q , ω 2 p z q p 1 ´ 1 1 p 2 “ 1 ´ 1 p ´ 1 q ď p 2 ď p , ω 1 p w q À ω p z , w q . q , J. Toft Analytic Ψdo Potsdam, March 2019 14 / 16

  73. Analytic pseudo-differential and integral operators Analytic Ψdo with Lebesgue conditions on their symbols Let L p p C d q — L p p R 2 d q be the mixed Lebesgue space with respect to p P r 1 , 8s 2 d , ω 0 be a weight on C d and let ω be a weight on C 2 d . ? 2 ¨| z | 2 ω 0 p Let B p p ω 0 q p C d q “ t F ; F p z q e ´ 1 2 ¨ z q P L p p C d q u . Let A p p ω 0 q p C d q “ B p If instead p P r 1 , 8s 4 d , let p ω 0 q p C d q X A p C d q . A p p ω q p C 2 d q “ t All K ; p z , w q ÞÑ K p z , w q P A p p ω q p C 2 d q u . � Thm. Teofanov-T. (2019) A p C 2 d q satisfies Suppose ω and K P � ? ? G K ,ω p z , w q “ e ´ 1 2 p| z | 2 `| w | 2 q K p z , w q¨ ω p G K ,ω p z ` w , z q P L p , q p C 2 d q , 2 z , 2 w q , ω 2 p z q p 1 ´ 1 1 p 2 “ 1 ´ 1 p ´ 1 q ď p 2 ď p , ω 1 p w q À ω p z , w q . q , Then T K is continuous from A p 1 p ω 1 q p C d q to A p 2 p ω 2 q p C d q . J. Toft Analytic Ψdo Potsdam, March 2019 14 / 16

  74. Analytic pseudo-differential and integral operators Analytic Ψdo with Lebesgue conditions on their symbols Thm. Teofanov-T. (2019) Suppose ω and K P � A p C 2 d q satisfies ? ? 2 p| z | 2 `| w | 2 q K p z , w q¨ ω p G K ,ω p z , w q “ e ´ 1 G K ,ω p z ` w , z q P L p , q p C 2 d q , 2 z , 2 w q , ω 2 p z q p 1 ´ 1 1 p 2 “ 1 ´ 1 p ´ 1 q , q ď p 2 ď p , ω 1 p w q À ω p z , w q . Then T K is continuous from A p 1 p ω 1 q p C d q to A p 2 p ω 2 q p C d q . J. Toft Analytic Ψdo Potsdam, March 2019 14 / 16

  75. Analytic pseudo-differential and integral operators Analytic Ψdo with Lebesgue conditions on their symbols Thm. Teofanov-T. (2019) Suppose ω and K P � A p C 2 d q satisfies ? ? 2 p| z | 2 `| w | 2 q K p z , w q¨ ω p G K ,ω p z , w q “ e ´ 1 G K ,ω p z ` w , z q P L p , q p C 2 d q , 2 z , 2 w q , ω 2 p z q p 1 ´ 1 1 p 2 “ 1 ´ 1 p ´ 1 q , q ď p 2 ď p , ω 1 p w q À ω p z , w q . Then T K is continuous from A p 1 p ω 1 q p C d q to A p 2 p ω 2 q p C d q . By putting some restrictions on ω , ω j and taking the counter image of the previous result with respect to the Bargmann transform one gets well-known results of continuity results of real Ψdo on modulation spaces, like J. Toft Analytic Ψdo Potsdam, March 2019 14 / 16

  76. Analytic pseudo-differential and integral operators Analytic Ψdo with Lebesgue conditions on their symbols Thm. Teofanov-T. (2019) Suppose ω and K P � A p C 2 d q satisfies ? ? 2 p| z | 2 `| w | 2 q K p z , w q¨ ω p G K ,ω p z , w q “ e ´ 1 G K ,ω p z ` w , z q P L p , q p C 2 d q , 2 z , 2 w q , ω 2 p z q p 1 ´ 1 1 p 2 “ 1 ´ 1 p ´ 1 q , q ď p 2 ď p , ω 1 p w q À ω p z , w q . Then T K is continuous from A p 1 p ω 1 q p C d q to A p 2 p ω 2 q p C d q . J. Toft Analytic Ψdo Potsdam, March 2019 14 / 16

  77. Analytic pseudo-differential and integral operators Analytic Ψdo with Lebesgue conditions on their symbols Thm. Teofanov-T. (2019) Suppose ω and K P � A p C 2 d q satisfies ? ? 2 p| z | 2 `| w | 2 q K p z , w q¨ ω p G K ,ω p z , w q “ e ´ 1 G K ,ω p z ` w , z q P L p , q p C 2 d q , 2 z , 2 w q , ω 2 p z q p 1 ´ 1 1 p 2 “ 1 ´ 1 p ´ 1 q , q ď p 2 ď p , ω 1 p w q À ω p z , w q . Then T K is continuous from A p 1 p ω 1 q p C d q to A p 2 p ω 2 q p C d q . Thm. Gr¨ ochenig-Heil, T. Suppose ω 2 p x ,ξ ` η q a P M p , q p 1 ´ 1 1 p 2 “ 1 ´ 1 p ´ 1 p ω q p R 2 d q . q ď p 2 ď p , ω 1 p x ` y ,ξ q À ω p x , ξ, η, y q , q , Then Op p a q is continuous from M p 1 p ω 1 q p R d q to M p 2 p ω 2 q p R d q . J. Toft Analytic Ψdo Potsdam, March 2019 14 / 16

  78. Analytic pseudo-differential and integral operators Some further properties A large family of modulation spaces: J. Toft Analytic Ψdo Potsdam, March 2019 15 / 16

  79. Analytic pseudo-differential and integral operators Some further properties A large family of modulation spaces: Definition modulation spaces Let p P r 1 , 8s 2 d , φ p x q “ e ´ 1 2 ¨| x | 2 , x P R d , ω is a weight on R 2 d , f P H 1 5 1 p R d q , and V φ f p x , ξ q “ x f , e ´ i x ¨ ,ξ y φ p ¨ ´ x qy (the STFT of f ). Then the modulation space M p p ω q p R d q is the set of all f P H 1 5 1 p R d q such that p ω q ” } V φ f ¨ ω } L p ă 8 . } f } M p J. Toft Analytic Ψdo Potsdam, March 2019 15 / 16

  80. Analytic pseudo-differential and integral operators Some further properties A large family of modulation spaces: Definition modulation spaces Let p P r 1 , 8s 2 d , φ p x q “ e ´ 1 2 ¨| x | 2 , x P R d , ω is a weight on R 2 d , f P H 1 5 1 p R d q , and V φ f p x , ξ q “ x f , e ´ i x ¨ ,ξ y φ p ¨ ´ x qy (the STFT of f ). Then the modulation space M p p ω q p R d q is the set of all f P H 1 5 1 p R d q such that p ω q ” } V φ f ¨ ω } L p ă 8 . } f } M p Usually strong restrictions are imposed on the weights (Feichtinger, Gr¨ ochenig). J. Toft Analytic Ψdo Potsdam, March 2019 15 / 16

  81. Analytic pseudo-differential and integral operators Some further properties A large family of modulation spaces: Definition modulation spaces Let p P r 1 , 8s 2 d , φ p x q “ e ´ 1 2 ¨| x | 2 , x P R d , ω is a weight on R 2 d , f P H 1 5 1 p R d q , and V φ f p x , ξ q “ x f , e ´ i x ¨ ,ξ y φ p ¨ ´ x qy (the STFT of f ). Then the modulation space M p p ω q p R d q is the set of all f P H 1 5 1 p R d q such that p ω q ” } V φ f ¨ ω } L p ă 8 . } f } M p J. Toft Analytic Ψdo Potsdam, March 2019 15 / 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend