testable implications of models of intertemporal choice
play

Testable Implications of Models of Intertemporal Choice Exponential - PowerPoint PPT Presentation

Testable Implications of Models of Intertemporal Choice Exponential Discounting and Its Generalizations Federico Echenique Taisuke Imai Kota Saito Cowles F. conference, June 9 2015 Utility and behavior Model: max U ( x ) x R T + s.t p


  1. Testable Implications of Models of Intertemporal Choice Exponential Discounting and Its Generalizations Federico Echenique Taisuke Imai Kota Saito Cowles F. conference, June 9 2015

  2. Utility and behavior Model: max U ( x ) x ∈ R T + s.t p · x ≤ I Echenique-Imai-Saito Exp. Discounting

  3. Utility and behavior (Market) behavior: Echenique-Imai-Saito Exp. Discounting

  4. x 1 x 2 Echenique-Imai-Saito Exp. Discounting

  5. Utility and behavior ◮ Q: When is observable behavior consistent with utility max.? ◮ A: When SARP is satisfied. Echenique-Imai-Saito Exp. Discounting

  6. This paper: max x ∈ R T + U ( x ) s.t p · x ≤ I ◮ Exponential discounting : � δ t u ( x t ) U ( x 0 , . . . , x T ) = t ∈T Importantly: u assumed to be st. increasing & concave. Echenique-Imai-Saito Exp. Discounting

  7. This paper: max x ∈ R T + U ( x ) s.t p · x ≤ I ◮ Exponential discounting : � δ t u ( x t ) U ( x 0 , . . . , x T ) = t ∈T ◮ Quasi-hyperbolic discounting : T � δ t u ( x t ) U ( x 0 , . . . , x T ) = u ( x 0 ) + β t =1 Importantly: u assumed to be st. increasing & concave. Echenique-Imai-Saito Exp. Discounting

  8. This paper: max x ∈ R T + U ( x ) s.t p · x ≤ I ◮ Exponential discounting : � δ t u ( x t ) U ( x 0 , . . . , x T ) = t ∈T ◮ Quasi-hyperbolic discounting : T � δ t u ( x t ) U ( x 0 , . . . , x T ) = u ( x 0 ) + β t =1 ◮ Time-separable utility : � U ( x 0 , . . . , x T ) = u t ( x t ) t ∈T Importantly: u assumed to be st. increasing & concave. Echenique-Imai-Saito Exp. Discounting

  9. This paper. ◮ Q: When is observable behavior consistent with model M.? ◮ A: When SA-M is satisfied. M ∈ { TSU, QHD, EDU } Application to experimental data. Echenique-Imai-Saito Exp. Discounting

  10. This paper. Application to experimental data from Andreoni and Sprenger “Estimating Time Preferences from Convex Budgets” (AER 2012). Fits our framework: ◮ “Economic” budget sets; ◮ Planned (not realized) consumption. later 25 20 15 10 5 sooner 5 10 15 20 Echenique-Imai-Saito Exp. Discounting

  11. Warmup Echenique-Imai-Saito Exp. Discounting

  12. Warmup The 2 × 2 case. ◮ 2 dates ◮ 2 observations ◮ Exp. discounting. Echenique-Imai-Saito Exp. Discounting

  13. What is the meaning of this: max u ( x 0 ) + δ u ( x 1 ) p 0 x 0 + p 1 x 1 ≤ I model for market behavior ? Unobservables: ◮ Utility u : R + → R st. inc. Observable: & conc. ◮ choices at different budgets ◮ δ ∈ (0 , 1] Echenique-Imai-Saito Exp. Discounting

  14. x 1 x 2 Echenique-Imai-Saito Exp. Discounting

  15. x 1 x 2

  16. MRS = u ′ ( x 0 ) δ u ′ ( x 1 ) x 1 x 2 Echenique-Imai-Saito Exp. Discounting

  17. x 1 x 2

  18. MRS = u ′ ( x 0 ) δ u ′ ( x 1 ) x 1 x 2

  19. MRS = u ′ ( x 0 ) δ u ′ ( x 1 ) x 1 x 2 Echenique-Imai-Saito Exp. Discounting

  20. Axiom 1 Axiom 2 Not: Not: x 1 x 1 x 2 x 2 Echenique-Imai-Saito Exp. Discounting

  21. END of Warmup Echenique-Imai-Saito Exp. Discounting

  22. Main theorem(s): A dataset is M-rationalizable iff it satisfies the “Strong Axiom of M” (SA-M). M = ◮ TSU ◮ Q-Hyperbolic discounting (QHD) ◮ Exp. discounting (EDU) Echenique-Imai-Saito Exp. Discounting

  23. Plug “Savage in the market” Echenique - Saito (2014) Subjective Expected Utility � U ( x ) = µ s u ( x s ) s ∈ S Echenique-Imai-Saito Exp. Discounting

  24. Data ◮ Time: T = { 0 , 1 , . . . , T } ; so T + 1 periods. ◮ Consumption path x ∈ R T + . ◮ Prices (interest rates): p ∈ R T ++ . k =1 , where x k ∈ R T A dataset is a collection { ( x k , p k ) } K + is a consumption path and and p k ∈ R T ++ a price vector. Echenique-Imai-Saito Exp. Discounting

  25. Rationalizable data ◮ Let M be a set of functions U : R T + → R . Echenique-Imai-Saito Exp. Discounting

  26. Rationalizable data ◮ Let M be a set of functions U : R T + → R . ◮ B ( p , I ) = { y ∈ R T + | p · y ≤ I } Echenique-Imai-Saito Exp. Discounting

  27. Rationalizable data ◮ Let M be a set of functions U : R T + → R . ◮ B ( p , I ) = { y ∈ R T + | p · y ≤ I } Definition Dataset { ( x k , p k ) } K k =1 is M-rational if ∃ U in the class M s.t. y ∈ B ( p k , p k · x k ) ⇒ U ( y ) ≤ U ( x k ) , Echenique-Imai-Saito Exp. Discounting

  28. Notation Let ◮ C = { u : R + → R | u is st. increasing and concave } Echenique-Imai-Saito Exp. Discounting

  29. Models: M ∈ { EDU,QHD,TSU } 1. EDU: set of U s.t � δ t u ( x t ) , U ( x 0 , . . . , x T ) = t ∈T for some u ∈ C , and δ ∈ (0 , 1]. 2. QHD: set of U s.t T � δ t u ( x t ) , U ( x 0 , . . . , x T ) = u ( x 0 ) + β t =1 for some u ∈ C , β > 0 and δ ∈ (0 , 1] 3. TSU: set of U s.t � U ( x 0 , . . . , x T ) = u t ( x t ) , t ∈T for some u t ∈ C , t ∈ T . Echenique-Imai-Saito Exp. Discounting

  30. Main result: EDU Derivation of SA-EDU. Echenique-Imai-Saito Exp. Discounting

  31. K = 1 and δ = 1. Derivation of SA-EDU ◮ K = 1 ◮ δ = 1 (fixed and known) ◮ u differentiable. Echenique-Imai-Saito Exp. Discounting

  32. K = 1 and δ = 1. � max x ∈ R T t ∈T u ( x t ) + � t ∈T p t x t ≤ I FOC: u ′ ( x t ) = λ p t Echenique-Imai-Saito Exp. Discounting

  33. K = 1 and δ = 1. u ′ ( x t ) = λ p t So, u ′ ( x t ) u ′ ( x t ′ ) = p t p t ′ Echenique-Imai-Saito Exp. Discounting

  34. K = 1 and δ = 1. u ′ ( x t ) = λ p t So, u ′ ( x t ) u ′ ( x t ′ ) = p t p t ′ Axiom (Downward sloping demand): x t > x t ′ ⇒ p t p t ′ ≤ 1 Echenique-Imai-Saito Exp. Discounting

  35. K = 1 and δ = 1. Consider two pairs of observations: x t 1 > x t 2 ⇒ p t 1 ≤ 1 p t 2 and x t 3 > x t 4 ⇒ p t 3 ≤ 1 p t 4 Or, when x t 1 > x t 2 and x t 3 > x t 4 then p t 1 p t 3 ≤ 1 . p t 2 p t 4 Echenique-Imai-Saito Exp. Discounting

  36. K = 1 and δ = 1. k ′ A sequence ( x k i i ) n t i , x i i =1 has the downward sloping demand t ′ property if n p k i k ′ x k i � t i t i > x i , i = 1 , . . . , n ⇒ i ≤ 1 . t ′ k ′ p i i =1 t ′ i Echenique-Imai-Saito Exp. Discounting

  37. Derive SA-EDU; K > 1 and δ = 1. Now: K > 1. u ′ ( x k t ) = λ k p k t So, u ′ ( x k t ′ ) = λ k p k t ) t u ′ ( x k ′ λ k ′ p k ′ t ′ Echenique-Imai-Saito Exp. Discounting

  38. Derive SA-EDU; K > 1 and δ = 1. Now: K > 1. u ′ ( x k t ) = λ k p k t So, � u ′ ( x k λ k p k t ′ ) = � t ) t ✚ u ′ ( x k ′ p k ′ λ k ′ ✚ t ′ Axiom (Downward sloping demand): t ′ and k = k ′ ⇒ p k t > x k ′ x k t ≤ 1 p k ′ t ′ Echenique-Imai-Saito Exp. Discounting

  39. u ′ ( x k ′ λ k ′ p k ′ u ′ ( x k p k t 1 ) t 3 ) t 4 ) = λ k t 1 t 3 u ′ ( x k ′ u ′ ( x k λ k ′ λ k p k ′ p k ′ t 2 ) t 2 t 4 Echenique-Imai-Saito Exp. Discounting

  40. ✚ u ′ ( x k ′ � p k ′ u ′ ( x k λ k ′ p k λ k t 1 ) t 3 ) ✚ t 4 ) = � t 1 t 3 ✚ u ′ ( x k ′ p k ′ p k ′ u ′ ( x k λ k ′ � t 2 ) ✚ λ k � t 2 t 4 Hence p k ′ t 4 ⇒ p k t 1 > x k ′ t 2 and x k ′ x k t 3 > x k t 1 t 3 ≤ 1 p k ′ p k ′ t 2 t 4 Echenique-Imai-Saito Exp. Discounting

  41. k ′ A sequence ( x k i i ) n t i , x i i =1 is balanced if each k appears as k i (on the t ′ left of the pair) the same number of times it appears as k ′ i (on the right). Axiom (for δ = 1 and K ≥ 1): Any balanced sequence has the downward sloping demand property. Echenique-Imai-Saito Exp. Discounting

  42. Derive SA-EDU - general K and δ Agent solves � δ t u ( x t ) max x ∈ R T + t ∈T � s.t. p t x t ≤ I , t ∈T Echenique-Imai-Saito Exp. Discounting

  43. FOC δ t u ′ ( x t ) = λ p t , So we need to find δ , u and λ k s.t δ t u ′ ( x k t ) = λ k p k t , for all k Echenique-Imai-Saito Exp. Discounting

  44. u ′ ( x k ′ λ k ′ p k ′ t ) = δ t t ′ ) t ′ . δ t ′ u ′ ( x k λ k p k t t > x k ′ Suppose that x k t ′ . Then: λ k ′ p k ′ δ t t ′ ≤ 1 , δ t ′ λ k p k t But δ , λ k ′ and λ k are unobservable. Echenique-Imai-Saito Exp. Discounting

  45. x k 1 t 1 > x k 2 t 2 and x k 2 t 3 > x k 1 t 4 . such that t 1 + t 3 ≥ t 2 + t 4 . u ′ ( x k 1 · u ′ ( x k 2 � λ k 1 p k 1 � � λ k 2 p k 2 � δ t 2 δ t 4 t 1 ) t 3 ) t 1 t 3 = · u ′ ( x k 2 u ′ ( x k 1 δ t 1 λ k 2 p k 2 δ t 3 λ k 1 p k 1 t 2 ) t 4 ) t 2 t 4 = δ ( t 2 + t 4 ) − ( t 1 + t 3 ) p k 1 p k 2 t 1 t 3 p k 2 p k 1 t 2 t 4 Echenique-Imai-Saito Exp. Discounting

  46. x k 1 t 1 > x k 2 t 2 and x k 2 t 3 > x k 1 t 4 . such that t 1 + t 3 ≥ t 2 + t 4 . ✚ u ′ ( x k 1 · u ′ ( x k 2 � λ k 1 p k 1 � � λ k 2 p k 2 � δ t 2 ✚ δ t 4 t 1 ) t 3 ) t 1 t 3 = · ✚ u ′ ( x k 2 u ′ ( x k 1 δ t 1 λ k 2 p k 2 δ t 3 λ k 1 p k 1 t 2 ) t 4 ) ✚ t 2 t 4 = δ ( t 2 + t 4 ) − ( t 1 + t 3 ) p k 1 p k 2 t 1 t 3 p k 2 p k 1 t 2 t 4 Echenique-Imai-Saito Exp. Discounting

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend