test of color reconnection models in z 3 jets
play

Test of color-reconnection models in Z 3 jets G.Rudolph - PowerPoint PPT Presentation

Test of color-reconnection models in Z 3 jets G.Rudolph Inst.f.Experimentalphysik, Uni Innsbruck Fachtagung Kern- u. Teilchenphysik, Weyer, 26 Sept 2004 Motivation: precise measurement of M W at LEP-2 (to better than 5 10 4 ) Color


  1. Test of color-reconnection models in Z → 3 jets G.Rudolph Inst.f.Experimentalphysik, Uni Innsbruck Fachtagung Kern- u. Teilchenphysik, Weyer, 26 Sept 2004

  2. Motivation: precise measurement of M W at LEP-2 (to better than 5 · 10 − 4 ) Color reconnection (CR) can modify the hadronic final state in the process e + e − → W + W − → ( q ¯ q )( q ¯ q ) and thus the reconstructed W mass. CR contributes the largest systematic uncertainty (90 MeV at present). Direct information from - particle momentum spectra - interjet particle flow (LEP comb.) - M W ( q ¯ qq ¯ q ) − M W ( lνq ¯ q ) (LEP comb.) - differential behaviour of M W with Pcut and Cone (new development) shows no convincing evidence for CR. Data consistent with no CR. Data not sensitive enough to test all models. Only extreme models (SK1 100%) can be excluded.

  3. How to calculate CR effects ? Perturbative QCD prediction for WW is of order (( α s /N C ) 2 · Γ W /M W ) , from which δM W = few MeV (negligible). Possible non-pert. CR ⇒ phenom. models General case : multiple gluon emission Leading Log parton shower determines a color sequence (in the large N C limit) for drawing the string : R − ¯ RG − ¯ GB − ¯ BG − ¯ GR − ¯ R.... Some models assume that non-perturbative rearrangement is possible among identical colors, with probability 1 /N 2 C , and takes place if the total string length (e.g. λ ) decreases. Leads to effects also within color singlet systems.

  4. CR Monte Carlo models : All but the last run with Pythia model criterion of free effect in reconnection parameter value Z → q ¯ q SK1 space-time overlap 0.6 not k I of flux tubes implemented SK2 crossing of - - NO vortex lines ARIADNE reduce total P reco 1/9 Y AR1, AR2 string length λ GAL reduce area with prob. R 0 0.1 Y (Rathsman) P = R 0 (1 − exp( − b ∆ A )) HERWIG reduce cluster size P reco 1/9 Y in space-time Predicted M W bias < 100 MeV for reasonable parameter values

  5. Test of CR in Z → hadrons : String drawing : possible ? normal CR effect localised in gluon jet because it often fragments in isolation = ⇒ select 3 jet events Sensitive variables : • Interjet particles (L3, PLB 581 (2004) 19) reconnected problem: no-CR Jetset and Ariadne predictions differ • Particle momentum spectra in jets : not clear what is tested. • Rapidity gaps, Jet charge ⇒ clear signal (OPAL, Eur.Phys.J.C35 (2004) 293, and Eur.Phys.J.C11 (1999) 217)

  6. ALEPH data analysis : From 3.4 million multihadronic Z events (LEP-1, 1992-1995) select 3-jet events using Durham cluster algorithm, with resolution y cut = 0 . 02 , ⇒ R 3 = 0 . 228 Energy-ordered analysis : Order the jets as x 1 > x 2 > x 3 , with x j = 2 E j /E cm More cuts : require Φ jk > 40 ◦ , x 3 > 0 . 1 , | cos Θ j | < 0 . 9 → 539000 events gluon purity < E jet > GeV P g (from MC) jet 3 17.7 0.69 gluon enriched jet 1 40.8 0.06 quark enriched Rapidity : refers to respective jet axis Charged particles: pion mass assumed; Neutral particles: pseudorapidity used.

  7. Multiplicity distributions (data, Jetset, GAL) (data, AR0, AR1) in fixed rapidity interval (0 - 1.5) : 80000 80000 ID 3022331 ID 3022331 Entries 538775 Entries 538775 70000 70000 60000 60000 Rate of jet 3 with a gap 50000 50000 40000 40000 (7% in data) 30000 30000 is sensitive to CR, 20000 20000 10000 10000 but not used as observable. 0 0 0 2 4 6 0 2 4 6 N(c+n), y in 0 - 1.5, jet 3 N(c+n), y in 0 - 1.5, jet 3 ID 3022311 ID 3022311 90000 90000 Entries 538775 Entries 538775 80000 80000 70000 70000 60000 60000 50000 50000 40000 40000 30000 30000 20000 20000 10000 10000 0 0 0 2 4 6 0 2 4 6 N(c+n), y in 0 - 1.5, jet 1 N(c+n), y in 0 - 1.5, jet 1

  8. Jet charge Q j = � i q i x 10 2 data, Jetset, GAL distributions, 1800 20000 ID 3020032 ID 3122332 Entries 538775 Entries 39037 18000 normalized to same area, 1600 Mean 0.4268E-01 Mean 0.1885E-01 RMS 1.595 RMS 1.055 16000 1400 for all jets 14000 1200 12000 1000 and for those with a rapidity gap 10000 800 8000 (i.e. no particles in 0 ≤ y ≤ y u , 600 6000 400 4000 with y u = 1 . 5 ) 200 2000 0 0 -5 -2.5 0 2.5 5 -5 -2.5 0 2.5 5 Several factors determine Q j : Q(jet 3), all Q(jet 3), y gap x 10 2 1800 20000 - charge compensation in fragment. ID 3020012 ID 3122312 Entries 538775 Entries 42307 18000 1600 Mean 0.5470E-01 Mean 0.1066E-01 RMS 1.463 RMS 0.9716 - cluster algorithm 16000 1400 14000 1200 - jet environment 12000 1000 10000 - detection effects 800 8000 600 6000 400 4000 Fraction f ( Q j = 0) of neutral 200 2000 0 0 gluon jets -5 -2.5 0 2.5 5 -5 -2.5 0 2.5 5 Q(jet 1), all Q(jet 1), y gap is sensitive to CR !

  9. Similar for data vs. Ariadne x 10 2 data, AR0, AR1 1800 20000 ID 3020032 ID 3122332 Entries 538775 Entries 39037 18000 1600 16000 1400 14000 1200 12000 1000 10000 800 8000 600 6000 400 4000 200 2000 0 0 -5 -2.5 0 2.5 5 -5 -2.5 0 2.5 5 Q(jet 3), all Q(jet 3), y gap x 10 2 1800 20000 ID 3020012 ID 3122312 Entries 538775 Entries 42307 18000 1600 16000 1400 14000 1200 12000 1000 10000 800 8000 600 6000 400 4000 200 2000 0 0 -5 -2.5 0 2.5 5 -5 -2.5 0 2.5 5 Q(jet 1), all Q(jet 1), y gap

  10. Result for relative model-data difference model-data difference δ = f ( Q j = 0) MC − f ( Q j = 0) data 0.2 0.2 δ δ JETSET+GAL HERWIG CR ARIADNE AR1 f ( Q j = 0) data 0.15 0.15 0.1 0.1 as a function of y u : 0.05 0.05 Data vs Jetset and Ariadne : 0 0 -0.05 -0.05 • jet 1: well described JETSET HERWIG ARIADNE -0.1 -0.1 0 1 2 0 1 2 • jet 3: CR models clearly disfavoured. y u of gap (c+n), jet 3 y u of gap (c+n), jet 3 0.2 0.2 δ δ • jet 3: interesting effect (??) : JETSET+GAL HERWIG CR ARIADNE AR1 0.15 0.15 More neutral jets with a y-gap seen 0.1 0.1 than expected without CR. 0.05 0.05 Also reported in Delphi 2002-053. 0 0 Data vs Herwig : -0.05 -0.05 JETSET HERWIG ARIADNE • cannot describe jet 1 ⇒ doubtful MC -0.1 -0.1 0 1 2 0 1 2 y u of gap (c+n), jet 1 y u of gap (c+n), jet 1 • no CR sensitivity in jet 3

  11. Systematic checks: Variation of the jet definition : • jet resolution parameter y cut varied from 0.005 to 0.05 • a different jet finder : Durham = ⇒ Jade • re-assigning particles to jets on basis of smallest angle • define y-gap with charged only ⇒ result does not change qualitatively Systematics from detector simulation : • varied track selection cuts and | cos Θ j | cut ⇒ δ remains within 1 σ • event charge Q ev = � i q i (= 0 ideally) used as a test quantity

  12. B-tag analysis : 0.4 δ = (f(Q=0) MC - f(Q=0) data ) / f(Q=0) data select Z → b ¯ bg events by JETSET+GAL requiring lifetime signals in 2 jets ARIADNE AR1 0.3 and no signal in 1 jet ⇒ the gluon jet 0.2 High purity : P g = 97 % < E jet > = 19 . 8 GeV 0.1 Less statistics : 24600 events 0 Effects numerically larger. Same result, JETSET -0.1 but statistically inferior to the energy- ARIADNE ordered analysis -0.2 -0.3 0 0.5 1 1.5 2 2.5 y u of gap (c+n), gluon jet

  13. Discussion The CR models AR1 and GAL fail to describe gluon jet data at the Z (confirming L3 and OPAL results) Does this have consequences for WW ? • Yes, according to the above models, the physics is the same • Not necessarily, according to Sj¨ ostrand Note also: ALEPH does not see Bose-Einstein correlations between pions from different W’s. My conclusion: large CR effects are unlikely

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend