tensor music in multidimensional sparse arrays
play

Tensor MUSIC in Multidimensional Sparse Arrays Chun-Lin Liu 1 and P . - PowerPoint PPT Presentation

Tensor MUSIC in Multidimensional Sparse Arrays Chun-Lin Liu 1 and P . Vaidyanathan 2 . P Dept. of Electrical Engineering, MC 136-93 California Institute of Technology, Pasadena, CA 91125, USA cl.liu@caltech.edu 1 , ppvnath@systems.caltech.edu 2


  1. Tensor MUSIC in Multidimensional Sparse Arrays Chun-Lin Liu 1 and P . Vaidyanathan 2 . P Dept. of Electrical Engineering, MC 136-93 California Institute of Technology, Pasadena, CA 91125, USA cl.liu@caltech.edu 1 , ppvnath@systems.caltech.edu 2 Asilomar Conference on Signals, Systems, and Computers, 2015 Liu and Vaidyanathan (Caltech) Tensor MUSIC ACSSC 2015 1 / 24

  2. Outline Introduction 1 Motivation Tensors Contribution: Tensor MUSIC in Multidimensional Sparse Arrays 2 Coarray tensor Tensor MUSIC spectrum Numerical Examples 3 4 Concluding Remarks Liu and Vaidyanathan (Caltech) Tensor MUSIC ACSSC 2015 2 / 24

  3. Introduction Outline Introduction 1 Motivation Tensors Contribution: Tensor MUSIC in Multidimensional Sparse Arrays 2 Coarray tensor Tensor MUSIC spectrum Numerical Examples 3 4 Concluding Remarks Liu and Vaidyanathan (Caltech) Tensor MUSIC ACSSC 2015 3 / 24

  4. Introduction Motivation Outline Introduction 1 Motivation Tensors Contribution: Tensor MUSIC in Multidimensional Sparse Arrays 2 Coarray tensor Tensor MUSIC spectrum Numerical Examples 3 4 Concluding Remarks Liu and Vaidyanathan (Caltech) Tensor MUSIC ACSSC 2015 4 / 24

  5. Introduction Motivation Harmonic Retrieval in Planar Array Processing 1 Planar arrays Incoming Received waveforms • • • • • • • • • • plane • • • • • • • • • • • • • • • • • • • • waves t • • • • • • • • • • • • • • • • • • • • Spatial information Temporal information Utimate Goal Estimate source profiles (azimuth, elevation, range, Doppler, etc.) from sensor measurements efficiently and accurately. 1 Harry L. Van Trees. Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory . Wiley Interscience, 2002. Liu and Vaidyanathan (Caltech) Tensor MUSIC ACSSC 2015 5 / 24

  6. Introduction Motivation Sparse Array Processing 2 , 3 Uniform Linear Arrays (ULAs) Linear Sparse Arrays ULA with N sensors and Nested array with N 1 , N 2 and sensor separation λ/ 2 . min. separation λ/ 2 . N N 1 N 2 •••••••••• • • • • • • • • • • λ/ 2 λ/ 2 ( N 1 + 1) λ/ 2 Identify at most N − 1 Identify O ( N 2 ) uncorrelated sources using N sensors. ✗ sources using O ( N ) sensors. ✓ 2 Alan T Moffet. “Minimum-redundancy linear arrays”. In: IEEE Trans. Antennas Propag. 16.2 (1968), pp. 172–175. 3 Piya Pal and P . P . Vaidyanathan. “Nested Arrays: A Novel Approach to Array Processing With Enhanced Degrees of Freedom”. In: IEEE Trans. Signal Process. 58.8 (2010), pp. 4167–4181. Liu and Vaidyanathan (Caltech) Tensor MUSIC ACSSC 2015 6 / 24

  7. Introduction Motivation Tensor Model 4,5, etc. Measurements Vector Model Tensor Model x = X = Spatial/temporal relations Spatial/temporal relations are mixed ✗ are separated ✓ 4 M. Haardt, F. Roemer, and G. Del Galdo. “Higher-Order SVD-Based Subspace Estimation to Improve the Parameter Estimation Accuracy in Multidimensional Harmonic Retrieval Problems”. In: IEEE Trans. Signal Process. 56.7 (2008), pp. 3198–3213. 5 D. Nion and N.D. Sidiropoulos. “Tensor Algebra and Multidimensional Harmonic Retrieval in Signal Processing for MIMO Radar”. In: IEEE Trans. Signal Process. 58.11 (2010), pp. 5693–5705. Liu and Vaidyanathan (Caltech) Tensor MUSIC ACSSC 2015 7 / 24

  8. Introduction Motivation Main Goal of this Work Proposed Scheme Azimuth Input Sparse Tensor Tensor Elevation arrays Models MUSIC Doppler etc. . . Related work: ULA, tensors, and MUSIC ⇒ DOA and polarization 6,7 . Nested arrays, tensors, and MUSIC ⇒ azimuth, elevation, and polarization 8 . 6 Sebastian Miron, Nicolas Le Bihan, and Jerome I Mars. “Vector-Sensor MUSIC for Polarized Seismic Sources Localization”. In: EURASIP Journal on Advances in Signal Processing 2005.1 (2005), pp. 74–84. 7 M. Boizard et al. “Numerical performance of a tensor MUSIC algorithm based on HOSVD for a mixture of polarized sources”. In: Proc. European Signal Process. Conf. 2013, pp. 1–5. 8 Keyong Han and A. Nehorai. “Nested Vector-Sensor Array Processing via Tensor Modeling”. In: IEEE Trans. Signal Process. 62.10 (2014), pp. 2542–2553. Liu and Vaidyanathan (Caltech) Tensor MUSIC ACSSC 2015 8 / 24

  9. Introduction Tensors Outline Introduction 1 Motivation Tensors Contribution: Tensor MUSIC in Multidimensional Sparse Arrays 2 Coarray tensor Tensor MUSIC spectrum Numerical Examples 3 4 Concluding Remarks Liu and Vaidyanathan (Caltech) Tensor MUSIC ACSSC 2015 9 / 24

  10. Introduction Tensors Notations 9 A Tensor A B = Outer product A ◦ B A � � , B = A Inner product � A , B � = U A n -mode product A × n U A × 1 U 9 Tamara G. Kolda and Brett W. Bader. “Tensor Decompositions and Applications”. In: SIAM Review 51.3 (2009), pp. 455–500. Liu and Vaidyanathan (Caltech) Tensor MUSIC ACSSC 2015 10 / 24

  11. Introduction Tensors Tensor Decomposition 10 CANDECOMP/PARAFAC (CP) decomposition: X ≈ � R r =1 a r ◦ b r ◦ c r . High-order SVD (HOSVD): X ≈ G × 1 A × 2 B × 3 C . 10 Tamara G. Kolda and Brett W. Bader. “Tensor Decompositions and Applications”. In: SIAM Review 51.3 (2009), pp. 455–500. Liu and Vaidyanathan (Caltech) Tensor MUSIC ACSSC 2015 11 / 24

  12. Contribution: Tensor MUSIC in Multidimensional Sparse Arrays Outline Introduction 1 Motivation Tensors Contribution: Tensor MUSIC in Multidimensional Sparse Arrays 2 Coarray tensor Tensor MUSIC spectrum Numerical Examples 3 4 Concluding Remarks Liu and Vaidyanathan (Caltech) Tensor MUSIC ACSSC 2015 12 / 24

  13. Contribution: Tensor MUSIC in Multidimensional Sparse Arrays Coarray tensor Outline Introduction 1 Motivation Tensors Contribution: Tensor MUSIC in Multidimensional Sparse Arrays 2 Coarray tensor Tensor MUSIC spectrum Numerical Examples 3 4 Concluding Remarks Liu and Vaidyanathan (Caltech) Tensor MUSIC ACSSC 2015 13 / 24

  14. Contribution: Tensor MUSIC in Multidimensional Sparse Arrays Coarray tensor Sparse Array Processing Vector Model : Estimate Auto- Hermitian � � x S ( k ) � � � θ i , R S x D R covariance correlation Toeplitz MUSIC . . . matrix 11 matrix vector Physical array S Difference coarray D Tensor Model (Proposed) : Estimate Auto- � � � � X S ( k ) � R S X D θ i , R Coarray Tensor covariance correlation . . . tensor MUSIC tensor tensor Existing Proposed 11 S.U. Pillai, et al. “A new approach to array geometry for improved spatial spectrum estimation”. Proc. IEEE 73.10 (1985); C.-L. Liu and P . P . Vaidyanathan. “Remarks on the Spatial Smoothing Step in Coarray MUSIC”. IEEE SPL 22.9 (2015). Liu and Vaidyanathan (Caltech) Tensor MUSIC ACSSC 2015 14 / 24

  15. Contribution: Tensor MUSIC in Multidimensional Sparse Arrays Coarray tensor Some Discussions on the Coarray Tensor � R Tensor model Vector model 12 � � R � p 1 ,p 2 ,...,p R ,p ′ 1 ,p ′ 2 ,...,p ′ R � � = � � R � p 1 ,p ′ 1 = � � x D � m 1 , X D � m 1 ,m 2 ,...,m R , p 1 − p ′ p r − p ′ 1 = m 1 . r = m r , r = 1 , 2 , . . . , R. � R avoids implementing spatial smoothing in tensors. � R admits the (tensor) MUSIC algorithm. 12 S.U. Pillai, et al. “A new approach to array geometry for improved spatial spectrum estimation”. Proc. IEEE 73.10 (1985); C.-L. Liu and P . P . Vaidyanathan. “Remarks on the Spatial Smoothing Step in Coarray MUSIC”. IEEE SPL 22.9 (2015). Liu and Vaidyanathan (Caltech) Tensor MUSIC ACSSC 2015 15 / 24

  16. Contribution: Tensor MUSIC in Multidimensional Sparse Arrays Tensor MUSIC spectrum Outline Introduction 1 Motivation Tensors Contribution: Tensor MUSIC in Multidimensional Sparse Arrays 2 Coarray tensor Tensor MUSIC spectrum Numerical Examples 3 4 Concluding Remarks Liu and Vaidyanathan (Caltech) Tensor MUSIC ACSSC 2015 16 / 24

  17. Contribution: Tensor MUSIC in Multidimensional Sparse Arrays Tensor MUSIC spectrum Tensor MUSIC MUSIC Tensor MUSIC 13 1 Eigen- 1 HOSVD: decomposition: R = � � K × 1 � U 1 × 2 � U 2 · · · × R � U R R = � � U � Λ � U H . × R +1 � U ∗ 1 × R +2 � U ∗ 2 · · · × 2 R � U ∗ R . 2 Signal and noise 2 Signal and noise subspace: subspace: � � � � � � � � � � U r = is a unitary matrix. U = U r,s U r,n U s U n 3 Tensor MUSIC spectrum 3 MUSIC spectrum: 1 P HOSV D (¯ µ ) = P (¯ θ ) = � � n v (¯ U H θ ) � 2 1 v (¯ θ ) : steering µ ) × 1 � U 1 ,n � 1 ,n . . . × R � U R,n � U H U H R,n � 2 � V (¯ F vectors. V (¯ µ ) : steering tensors. 13 M. Boizard et al. “Numerical performance of a tensor MUSIC algorithm based on HOSVD for a mixture of polarized sources”. In: Proc. European Signal Process. Conf. 2013, pp. 1–5. Liu and Vaidyanathan (Caltech) Tensor MUSIC ACSSC 2015 17 / 24

  18. Contribution: Tensor MUSIC in Multidimensional Sparse Arrays Tensor MUSIC spectrum Problem with tensor MUSIC via HOSVD Our observation: P HOSV D (¯ µ ) is a separable MUSIC spectrum R � 1 µ ( r ) ) , µ ( r ) ) = P HOSV D (¯ µ ) = P r (¯ P r (¯ � � µ ( r ) ) � 2 U H r,n v U + r (¯ r =1 2 P HOSV D (¯ µ ) has cross-terms • • Actual µ (2) ¯ P HOSV D (¯ µ ) • µ (1) ¯ Liu and Vaidyanathan (Caltech) Tensor MUSIC ACSSC 2015 18 / 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend