tcp congestion signatures
play

TCP CONGESTION SIGNATURES Srikanth Sundaresan (Facebook) Amogh - PowerPoint PPT Presentation

TCP CONGESTION SIGNATURES Srikanth Sundaresan (Facebook) Amogh Dhamdhere (CAIDA/UCSD) kc Claffy (CAIDA/UCSD) Mark Allman (ICSI) 1 w w w . cai da. or Typical Speed Tests Dont Tell Us Much 2 w w w . cai da. or Typical Speed Tests


  1. TCP CONGESTION SIGNATURES Srikanth Sundaresan (Facebook) Amogh Dhamdhere (CAIDA/UCSD) kc Claffy (CAIDA/UCSD) Mark Allman (ICSI) 1 w w w . cai da. or

  2. Typical Speed Tests Don’t Tell Us Much 2 w w w . cai da. or

  3. Typical Speed Tests Don’t Tell Us Much 2 w w w . cai da. or

  4. Typical Speed Tests Don’t Tell Us Much 2 w w w . cai da. or

  5. Typical Speed Tests Don’t Tell Us Much • Upload and download throughput measurements: no information beyond that 2 w w w . cai da. or

  6. Typical Speed Tests Don’t Tell Us Much What type of congestion did the TCP flow experience? 2 w w w . cai da. or

  7. Two Potential Sources of Congestion in the End-to-end Path 3 w w w . cai da. or

  8. Two Potential Sources of Congestion in the End-to-end Path • Self-induced congestion - Clear path, the flow is able to saturate the bottleneck link - eg: last-mile access link 3 w w w . cai da. or

  9. Two Potential Sources of Congestion in the End-to-end Path • Self-induced congestion - Clear path, the flow is able to saturate the bottleneck link - eg: last-mile access link • External congestion - Flow starts on an already congested path - eg: congested interconnect 3 w w w . cai da. or

  10. Two Potential Sources of Congestion in the End-to-end Path • Self-induced congestion - Clear path, the flow is able to saturate the bottleneck link - eg: last-mile access link • External congestion - Flow starts on an already congested path - eg: congested interconnect Distinguishing the two cases has implications for users / ISPs / regulators 3 w w w . cai da. or

  11. Does Throughput Indicate Type of Congestion? • Cannot distinguish using just throughput numbers - Access plan rates vary widely, and are typically not available to content / speed test providers - eg: Speed test reports 5 Mbps – is that the access link rate (DSL), or a congested path? 4 w w w . cai da. or

  12. Does Throughput Indicate Type of Congestion? • Cannot distinguish using just throughput numbers - Access plan rates vary widely, and are typically not available to content / speed test providers - eg: Speed test reports 5 Mbps – is that the access link rate (DSL), or a congested path? We can use the dynamics of TCP’s startup phase, i.e., Congestion Signatures 4 w w w . cai da. or

  13. TCP’s RTT Congestion Signatures 5 w w w . cai da. or

  14. TCP’s RTT Congestion Signatures • Flows experiencing self-induced congestion fill up an empty buffer during slow start - Hence increase the TCP flow RTT 5 w w w . cai da. or

  15. TCP’s RTT Congestion Signatures • Flows experiencing self-induced congestion fill up an empty buffer during slow start - Hence increase the TCP flow RTT • Externally congested flows encounter an already full buffer - Less potential for RTT increases 5 w w w . cai da. or

  16. TCP’s RTT Congestion Signatures • Flows experiencing self-induced congestion fill up an empty buffer during slow start - Hence increase the TCP flow RTT • Externally congested flows encounter an already full buffer - Less potential for RTT increases • Self-induced congestion therefore has higher RTT variance compared to external congestion 5 w w w . cai da. or

  17. TCP’s RTT Congestion Signatures • Flows experiencing self-induced congestion fill up an empty buffer during slow start - Hence increase the TCP flow RTT • Externally congested flows encounter an already full buffer - Less potential for RTT increases • Self-induced congestion therefore has higher RTT variance compared to external congestion We can quantify this using Max-Min and CoV of RTT 5 w w w . cai da. or

  18. Example Controlled Experiment 1 . 0 • 20 Mbps “access” link External 0 . 8 Self with 100 ms buffer 0 . 6 CDF • 1 Gbps “interconnect” 0 . 4 link with 50 ms buffer 0 . 2 Max-Min RTT 0 . 0 10 1 10 2 1 . 0 • Self-induced External 0 . 8 Self congestion flows have 0 . 6 higher values for both CDF metrics and are clearly 0 . 4 distinguishable 0 . 2 CoV RTT 0 . 0 10 − 2 10 − 1 10 0 6 w w w . cai da. or

  19. Example Controlled Experiment 1 . 0 • 20 Mbps “access” link External 0 . 8 Self with 100 ms buffer 0 . 6 CDF • 1 Gbps “interconnect” 0 . 4 link with 50 ms buffer 0 . 2 Max-Min RTT 0 . 0 10 1 10 2 1 . 0 • Self-induced External 0 . 8 Self congestion flows have 0 . 6 higher values for both CDF metrics and are clearly 0 . 4 distinguishable 0 . 2 CoV RTT 0 . 0 10 − 2 10 − 1 10 0 The two types of congestion exhibit widely contrasting behaviors 6 w w w . cai da. or

  20. Model • Max-min and CoV of RTT derived from RTT samples during slow start • We feed the two metrics into a simple Decision Tree - We control the depth of the tree to a low value to minimize complexity • We build the decision tree classifier using controlled experiments and apply it to real-world data 7 w w w . cai da. or

  21. Validating the Method: Step 1- Controlled Experiments Server 2 Server 1 Internet Pi 1 100 Mbps 1 Gbps Server 3 Shaped “access” R2 R1 Pi 2 Server 4 8 w w w . cai da. or

  22. Validating the Method: Step 1- Controlled Experiments Server 2 Server 1 Background cross-traffic Internet Pi 1 100 Mbps 1 Gbps Server 3 Shaped “access” R2 R1 Interconnect Pi 2 cross-traffic Server 4 8 w w w . cai da. or

  23. Validating the Method: Step 1- Controlled Experiments Server 2 Server 1 Background cross-traffic Internet Pi 1 100 Mbps 1 Gbps Server 3 Shaped “access” R2 R1 Interconnect Pi 2 cross-traffic Throughput Server 4 tests 8 w w w . cai da. or

  24. Validating the Method: Step 1- Controlled Experiments Server 2 Server 1 Background cross-traffic Internet Pi 1 100 Mbps 1 Gbps Server 3 Shaped “access” R2 R1 Interconnect Pi 2 cross-traffic Throughput Server 4 tests • Emulated “access” link + “core” link - Wide range of access link throughputs, buffer sizes, loss rates, cross- traffic (background and congestion-inducing) - Can accurately label flows in training data as “self” or “externally” congested 9 w w w . cai da. or

  25. Validating the Method: Step 1- Controlled Experiments Server 2 Server 1 Background cross-traffic Internet Pi 1 100 Mbps 1 Gbps Server 3 Shaped “access” R2 R1 Interconnect Pi 2 cross-traffic Throughput Server 4 tests High accuracy: precision and recall > 90% in most settings 10 w w w . cai da. or

  26. Validating the Method: Step 2 ISP B ISP A Ark VP • From Ark VP in ISP A identified congested link with ISP B using TSLP* *Dhamdhere et al. “Inferring Persistent Interdomain Congestion”, SIGCOMM 2018 11 w w w . cai da. or

  27. Validating the Method: Step 2 ISP B “far” side Interdomain link “near” side ISP A Ark VP • From Ark VP in ISP A identified congested link with ISP B using TSLP* *Dhamdhere et al. “Inferring Persistent Interdomain Congestion”, SIGCOMM 2018 11 w w w . cai da. or

  28. Validating the Method: Step 2 ISP B “far” side Latency measurements to “near” and “far” side of Interdomain link “near” side interdomain link over time ISP A Ark VP • From Ark VP in ISP A identified congested link with ISP B using TSLP* *Dhamdhere et al. “Inferring Persistent Interdomain Congestion”, SIGCOMM 2018 11 w w w . cai da. or

  29. Validating the Method: Step 2 ISP B TSLP latency (far side) 70 60 “far” side 50 40 30 Interdomain 20 link 10 “near” side 02/18 02/25 03/04 03/11 ISP A Ark VP • From Ark VP in ISP A identified congested link with ISP B using TSLP* *Dhamdhere et al. “Inferring Persistent Interdomain Congestion”, SIGCOMM 2018 12 w w w . cai da. or

  30. Validating the Method: Step 2 ISP B TSLP latency (far side) 70 60 “far” side 50 40 30 Interdomain 20 link 10 “near” side 02/18 02/25 03/04 03/11 ISP A Diurnal latency elevation Ark VP indicates congestion • From Ark VP in ISP A identified congested link with ISP B using TSLP* *Dhamdhere et al. “Inferring Persistent Interdomain Congestion”, SIGCOMM 2018 12 w w w . cai da. or

  31. Validating the Method: Step 2 M-lab NDT server ISP B congested link ISP A Ark VP 13 w w w . cai da. or

  32. Validating the Method: Step 2 M-lab NDT server ISP B Throughput measurements from Ark VP to M-lab NDT server congested link traversing congested interdomain link ISP A Ark VP 13 w w w . cai da. or

  33. Validation of the Method: Step 2 30 25 d/l Mbps 20 15 10 5 0 02/18 02/25 03/04 03/11 TSLP latency (far side) 70 60 50 40 30 20 10 02/18 02/25 03/04 03/11 Strong correlation between throughput and TSLP latency: flows during elevated TSLP latency labeled as “externally” congested 14 w w w . cai da. or

  34. Validation of the Method: Step 2 30 25 “Externally” d/l Mbps 20 congested 15 10 5 0 02/18 02/25 03/04 03/11 TSLP latency (far side) 70 60 50 40 30 20 10 02/18 02/25 03/04 03/11 Strong correlation between throughput and TSLP latency: flows during elevated TSLP latency labeled as “externally” congested 14 w w w . cai da. or

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend