takahiro nishinaka
play

Takahiro Nishinaka ( Ritsumeikan U. ) 1. Review of [ Beem, Lemos, - PowerPoint PPT Presentation

Chiral algebras for 4d superconformal field theories N 2 Takahiro Nishinaka ( Ritsumeikan U. ) 1. Review of [ Beem, Lemos, Liendo, Peelaers, Rastelli, van Rees ] arXiv: 1312.5344 thanks to : Matt Buican, Jaewang Choi, Kazuki


  1. Chiral algebras for 4d superconformal field theories N ≥ 2 Takahiro Nishinaka ( Ritsumeikan U. ) 1. Review of [ Beem, Lemos, Liendo, Peelaers, Rastelli, van Rees ] arXiv: 1312.5344 thanks to : Matt Buican, Jaewang Choi, Kazuki Kiyoshige, Zoltan Laczko, Hironori Mori, Sanefumi Moriyama, Yuji Tachikawa, Seiji Terashima, Ruidong Zhu w/ Matt Buican, Zoltan Laczko 2. The last part is based on arXiv: 1706.03797 ( Queen Mary )

  2. OPEs in 4d CFTs X O 1 ( x ) O 2 (0) = c 12 k ( x ) O k (0) k Q: What do we know about the OPEs when we have SUSY.

  3. Introduction ( ) ⇥ ⇤ [ S α , O ] = = 0 S ˙ α , O Let us focus on chiral primary operators such that O or ⇥ ⇤ Φ = O + θψ + θ 2 F Q ˙ α , O = 0 The OPE of two chiral primaries is non-singular + O 1 ( x ) O 2 (0) = O 3 (0) chiral We can safely set to get x = 0 O 1 (0) O 2 (0) = O 3 (0) ( chiral ring )

  4. ⊃ Super Conformal Field Theory ∀ 4d N=1 SCFT O 1 (0) O 2 (0) = O 3 (0) ( 0d OPEs ) This is useful to study SUSY vacua of the theory.

  5. ⊃ x 3 , 4 ’13 [ Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees ] z 0 ∃ ∀ 2d chiral algebra 4d N=2 SCFT ( Vertex Operator Algebra ) Since here is a coordinate dependence, this algebra captures more than the SUSY vacua of the theory.

  6. ⊃ Goal of this talk ’13 [ Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees ] 1. I will review… • 4d N=2 SCFTs 2d chiral algebras Virasoro algebra ( ) c < 0 = • Its character 4d superconformal index 2. I will also talk about our recent work. ( exotic 4d N=2 SCFT whose detail is totally unclear ) ’17 [ Buican - Laczko - TN ]

  7. Outline 6 slides 1. 2d chiral algebra 7 slides 2. Examples 3. What’s still to be understood 3 slides 4. Our recent work 7 slides

  8. Outline 6 slides 1. 2d chiral algebra 7 slides 2. Examples 3. What’s still to be understood 3 slides 4. Our recent work 7 slides

  9. 2d chiral algebra N=2 supercharges I ˙ ± ± , S Q I 4d N=2 SCFT ± , Q I ˙ ± , S I I = 1 , 2 2 ˙ Schur operators : annihilated by 2 Q 1 − , S 1 − , S − O − , Q ˙ ∆ − ( j 1 + j 2 ) − 2 R = 0 scaling dim. su(2) R charge so(4) spins 2 ˙ {Q , Q † } = ∆ − ( j 1 + j 2 ) − 2 R Q ≡ Q 1 − + S − ⇒ = = Schur ops. Ker � Ker / Im Q {Q , Q † } Q ' cohomology

  10. 2d chiral algebra ∆ − ( j 1 + j 2 ) − 2 R = 0 Schur operators scaling dim. su(2) R charge so(4) spins e.g. ) j 1 = j 2 = 1 SU(2) R current J µ σ µ ∆ = 3 , 2 , R = 1 + ˙ + Higgs branch op. O ∆ = 2 R, j 1 = j 2 = 0 j 1 = j 2 = 1 σ µ derivative + ∂ µ ∆ = 1 , + ˙ 2 The spectrum of Schur operators is generally highly non-trivial.

  11. 2d chiral algebra ’13 [Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees] x 3 , 4 z = x 1 + ix 2 4d 2d x 3 = x 4 = 0 O 2 (0) O 1 ( z, ¯ z ) Schur Schur Twisted translation z b z b L − 1 O 1 (0) e − zL − 1 − ¯ z ) ≡ e zL − 1 +¯ L − 1 O 1 ( z, ¯ SU(2) R lowering op. ⇥ ⇤ Q , L − 1 = 0 L − 1 ≡ P 1 − iP 2 � ⇒ = 1 b Q , Q L − 1 = b ˙ L − 1 ≡ P 1 + iP 2 + R − − ( -exact ) Q ✓ − ◆ 2 ˙ Q ≡ Q 1 − + S

  12. 2d chiral algebra ’13 [Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees] z b z b L − 1 O 1 (0) e − zL − 1 − ¯ z ) ≡ e zL − 1 +¯ L − 1 4d 2d O 1 ( z, ¯ -exact Q Then the 4d OPE implies the following “2d OPE” + c 12 k X -exact O 1 ( z, ¯ z ) O 2 (0 , 0) = z h 1 + h 2 − h k O k (0 , 0) Q k ( ) h = ∆ − R In the sense of the -cohomology, Q c 12 k 2d chiral algebra X O 1 ( z ) O 2 (0) = z h 1 + h 2 − h k O k (0) k

  13. 2d chiral algebra ’13 [Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees] Virasoro sub-algebra x 3 , 4 SU(2) R current + ≡ J µ σ µ J + ˙ + ˙ + z 0 z b z b T ( z ) ≡ e zL − 1 +¯ L − 1 J + ˙ + (0) e − zL − 1 − ¯ L − 1 4 ⇡ 4 � IJ x 2 g µ ν − 2 x µ x ν ⇡ 2 ✏ IJK x µ x ν x ρ · J ρ ν (0) ∼ − 3 c 4d + 2 i K (0) 4d J I µ ( x ) J J + · · · x 8 x 6 T ( z ) T (0) ∼ − 6 c 4d + 2 T (0) 2d + · · · z 4 z 2 Virasoro algebra w/ c 2d = − 12 c 4d < 0

  14. 2d chiral algebra 4d Schur op. O k twisted translation O ( z ) ∆ = j 1 + j 2 + 2 R cohomology h = ∆ − R 4d 2d SU(2) R current stress tensor T ( z ) J + ˙ + SUSY flavor G F affine G F current J A M A J A ( z ) current µ Higgs branch Virasoro primary O ( z ) O operators

  15. Outline 1. 2d chiral algebra 7 slides 2. Examples 3. What’s still to be understood 3 slides 4. Our recent work 7 slides

  16. Examples ’13 [ Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees ] Schur ! χ free hypermultiplet q SU(2) R doublet φ q φ † ψ 1 1 4d q † ( x ) q (0) ∼ φ † ( x ) φ (0) ∼ x 2 , x 2

  17. Examples ’13 [ Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees ] Schur ! χ free hypermultiplet q SU(2) R doublet φ q φ † ψ 1 1 x 3 , 4 4d q † ( x ) q (0) ∼ φ † ( x ) φ (0) ∼ z , z ¯ z ¯ z z 2d q twisted ( z ) = q ( z, ¯ z φ † ( z, ¯ z ) + ¯ z ) q twisted ( z ) φ (0) ∼ 1 z ( 2d symplectic boson ) T = 1 2( q ∂φ − φ∂ q )

  18. The same analysis for a free vector mult. is easy. But, for interacting theories, it is not straightforward to identify the corresponding 2d chiral algebra. Many guessworks have been done by using the equivalence: 4d 2d = Tr 4d local ops. ( − 1) F q ∆ − R Tr chiral alg. ( − 1) F q L 0 ( superconformal index ) ( character of chiral alg. )

  19. Examples ’95 [ Argyres - Douglas ] ’95 [ Argyres - Plesser - Seiberg -Witten ] ’96 [ Eguchi - Hori - Ito - Yang ] H 0 Argyres-Douglas theory massless monopole, dyon H 0 Argyres-Douglas N=2 pure SU(3) ( N=2 SCFT ) deep IR Tr 4d local ops. ( − 1) F q ∆ − R ’15 [ Cordova - Shao ] = 1 + q 2 + q 3 + q 4 + q 5 + 2 q 6 + 2 q 7 + 3 q 8 + 3 q 9 + 4 q 10 + 4 q 11 + 6 q 12 + · · · q − 27 ✓ ◆ (20 ` − 3)2 (20 ` +7)2 120 X = 40 40 q − q Q ∞ n =1 (1 − q n ) ` ∈ Z identical to the character of Virasoro algebra w/ c 2d = − 22 ( = − 12 c 4d ) 5

  20. Examples H 0 Argyres-Douglas theory ’15 [ Cordova - Shao ] This result strongly suggests that, for this AD theory, c 2d = − 22 = 2d chiral algebra Virasoro algebra w/ 5 This immediately implies the absence of fermionic Schur ops. Moreover, Hall-Littlewood 2 ˙ annihilated by 2 Q 1 − , S 1 − , S − O − , Q operators : ˙ 2 ˙ 2 + Q S ˙ + When mapped to 2d, they cannot be generated by T ( z )

  21. Examples H 0 Argyres-Douglas theory ’15 [ Cordova - Shao ] This result strongly suggests that, for this AD theory, c 2d = − 22 = 2d chiral algebra Virasoro algebra w/ 5 This immediately implies the absence of fermionic Schur ops. Moreover, Hall-Littlewood 2 ˙ annihilated by 2 Q 1 − , S 1 − , S − O − , Q operators : ˙ Absence of such ops in this thy! 2 ˙ 2 + Q S ˙ + When mapped to 2d, they cannot be generated by T ( z )

  22. We can learn much about the spectrum of 4d Schur ops. from the 2d chiral algebra. It is more powerful than the superconformal index. Combining it w/ other 4d data will give us more information. + e.g.) 2d stress tensor correlator 4d fusion rules ’15 [ Liendo - Ramirez - Seo ] new 4d unitarity bound ⇒ = c 4 d ≥ 11 c 2d ≤ − 22 ⇐ ⇒ 30 5 ( for interacting N=2 SCFTs )

  23. Examples ’13 [ Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees ] ’16 [ TN - Tachikawa ] N > 2 SCFT ’16 [ Lemos, Liendo, Meneghelli, Mitev ] ✓ − ◆ = 2 ˙ � Schur ops. Ker {Q , Q † } Q ≡ Q 1 − + S • 4d N=2 superconformal algebra (SCA) has no supercharge that commutes w/ . {Q , Q † } 2d N=0 chiral alg. ⇒ = • If you have N>2 SCA, there are such supercharges : 2d N=2 4d N=3 SCFT 4d N=4 SCFT 2d N=4

  24. In summary, • For interacting theories, the chiral algebra can be guessed w/ help of = Tr chiral alg. ( − 1) F q L 0 Tr 4d local ops. ( − 1) F q ∆ − R ( superconformal index ) ( character of chiral alg. ) e.g.) SU(2) N f = 4, MN’s E 6 , E 7 , E 8 , AD theories, … • 2d chiral algebra tells much about the spectrum of Schur ops. and more.

  25. Outline 1. 2d chiral algebra 2. Examples 3. What’s still to be understood 3 slides 4. Our recent work 7 slides

  26. The full set of relevant chiral algebras? • Not all 2d chiral algebras are related to 4d ∃ ∀ 2d chiral algebra 4d N=2 SCFT ( The converse is not true. ) • Which class of 2d chiral algebras is related to 4d N=2 SCFTs? c 2d ≤ − 22 ( if the 4d is interacting ) c 2d < 0 5 There are perhaps more constraints, which are NOT fully understood.

  27. The full set of relevant chiral algebras? ( 2 weeks ago ) ’17 [ Beem - Rastelli ] Recent conjecture operators involving { { chiral algebra V ⊃ C 2 ( V ) ≡ a derivative 4d Higgs branch ⇣ ⌘ . { nilpotent elements { V/C 2 ( V ) ' chiral ring conjecture [ Zhu ] [ Arakawa ] This immediately implies that T k + ϕ is null. ( ) ∃ k > 0 , ϕ ∈ C 2 ( V )

  28. ∃ ∀ 2d chiral algebra 4d N=2 SCFT

  29. ∀ 2d chiral algebra ∀ 4d N=2 SCFT in a class not established yet We might be able to classify 4d N=2 SCFT in terms of 2d chiral algebras.

  30. Outline 1. 2d chiral algebra 2. Examples 3. What’s still to be understood 4. Our recent work 7 slides

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend