tagging strange jets constraining h s s
play

Tagging strange jets & constraining h s s Matthias Schlaffer - PowerPoint PPT Presentation

Tagging strange jets & constraining h s s Matthias Schlaffer Weizmann Institute of Science based on: 1811.09636 (J. Duarte-Campderros, G. Perez, MS, A. Soffer) work in progress 4th NPKI workshop, Seoul May 2019 Gauge boson masses


  1. Tagging strange jets & constraining h → s ¯ s Matthias Schlaffer Weizmann Institute of Science based on: 1811.09636 (J. Duarte-Campderros, G. Perez, MS, A. Soffer) work in progress 4th NPKI workshop, Seoul May 2019

  2. Gauge boson masses Higgs is main source of electroweak symmetry breaking! -1 35.9 fb (13 TeV) CMS Observed ± σ ⊕ 1 (stat syst) ± σ ⊕ 2 (stat syst) ± σ 1 (syst) γ γ µ µ X = BR X | meas. BR X | SM µ ZZ µ WW µ τ τ µ bb µ µ µ − − 2 1 0 1 2 3 Parameter value [CMS: 1809.10733] Higgs couples to gauge bosons as expected Matthias Schlaffer 1

  3. What about fermion masses and the flavor structure? SM: economic solution, Higgs does it! h v ⇒ ⇒ m ψ ∝ y ψ ψ ψ ψ Does it? -1 35.9 fb (13 TeV) V t v 1 m CMS Z ✸ tth , h → ττ , h → bb > 5 σ ( � ) W V κ or − 1 10 ✸ h → µµ : µ µµ < 2 . 8 at 95 % CL F m v b F κ τ − 2 10 [ATLAS: 1705.04582] SM Higgs boson ε (M, ) fit − 3 µ 10 ± σ 1 Other fermions, especially quarks, ± σ 2 much less constrained − 10 4 Ratio to SM 1.5 ⇒ flavor puzzle unsolved 1 0.5 E.g. Yukawa modifications 0 − 1 2 10 1 10 10 Particle mass [GeV] [CMS: 1809.10733] Matthias Schlaffer 2

  4. Difficulties i) small branching ratio Branching Ratio LHC HIGGS XS WG 2016 1 b b WW gg -1 10 τ τ c c ZZ -2 10 γ γ -3 10 γ Z [LHCHXSWG] µ µ -4 10 120 121 122 123 124 125 126 127 128 129 130 M [GeV] n e H m o g m r n n s n o t o r g c w a a t g e u u t p p o r h o m a i o l t H e u d s c b t t | | | | | | | | | | Mass [ eV ] 10 6 10 7 10 8 10 9 10 10 10 11 10 12 Matthias Schlaffer 3

  5. Difficulties i) small branching ratio ii) difficult final state for quarks Branching Ratio LHC HIGGS XS WG 2016 1 > quarks appear as jets b b WW > large background gg -1 10 τ τ > hard to distinguish c c ZZ Nevertheless: -2 10 h → cc will be measured at % γ γ level at FCC-ee -3 10 γ Z [Dawson et.al ’13] [LHCHXSWG] µ µ -4 10 120 121 122 123 124 125 126 127 128 129 130 What about strange? M [GeV] n e H m o g m r n n s n o t o r g c w a a t g e u u t p p o r h o m a i o l t H e u d s c b t t | | | | | | | | | | Mass [ eV ] 10 6 10 7 10 8 10 9 10 10 10 11 10 12 Matthias Schlaffer 3

  6. Exclusive decay h → φγ [Bodwin et.al ’13, Kagan et.al ’14] φ φ � � ¯ s s ¯ s s + h h γ γ s ) + K − (¯ s ) → K + ( u ¯ > Clean decay: BR ( φ ( s ¯ us )) ≈ 50% > BUT: BR ( h → φγ ) ≈ 2 × 10 − 6 [König et.al ’15] s ) ≈ 2 × 10 − 4 > compare BR ( h → s ¯ > only weak limit at future (hadron) colliders [Kagan et.al ’14] estimate: µ ss � O (10 7 ) @HL-LHC > current limit: BR ( h → φγ ) < 4 . 8 × 10 − 4 [ATLAS ’17] Ideas to use differential distributions [see e.g. Bishara et.al ’16, Soreq et.al ’16, Yu ’16, Carpenter et.al ’16] Matthias Schlaffer 4

  7. Brute force method Alternative ansatz: > FCC-ee will produce 10 6 Higgses via e − Z Z ∗ e + h > O (200) of which decay into strange quarks > tag strange jets > Done before in Z → s ¯ s – Measurement of the strange quark forward backward asymmetry around the Z0 peak [DELPHI Collaboration, Eur.Phys.J. C14 (2000)] – Light quark fragmentation in polarized Z0 decays [SLD Collaboration, Nucl.Phys.Proc.Suppl. 96 (2001)] Matthias Schlaffer 5

  8. Jet-Flavor > define flavor of jet for light quarks and gluon > strange quarks fragment more likely into hard kaons 10 0 10 1 F s + ( z ) Q 2 = m 2 h + K + 10 2 JAM17 Pythia 8 Herwig MG5aMC@NLO + Pythia 8 10 3 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 z Matthias Schlaffer 6

  9. Jet-Flavor > define flavor of jet for light quarks and gluon > strange quarks fragment more likely into hard kaons 10 0 Q 2 = m 2 h + K + Pythia 8 Herwig 10 1 F g ( z ) 10 2 10 3 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 z Matthias Schlaffer 7

  10. Jet-Flavor > define flavor of jet for light quarks and gluon > strange quarks fragment more likely into hard kaons π − π + K + � H ∈ j � p H · ˆ sR H J F = � H ∈ j � p H · ˆ s Matthias Schlaffer 8

  11. Jet-Flavor > define flavor of jet for light quarks and gluon > strange quarks fragment more likely into hard kaons K − K + K + � H ∈ j � p H · ˆ sR H J F = � H ∈ j � p H · ˆ s Matthias Schlaffer 8

  12. Jet-Flavor > define flavor of jet for light quarks and gluon > strange quarks fragment more likely into hard kaons > J s : R K ± = ∓ 1 , R K s = ± 1 minimizing J s , else 0 > counts collinear hard strange content > not safe against collinear emission h → u ¯ u h → d ¯ d 10 1 h → s ¯ s h → gg fraction of events / 0.02 Herwig Pythia 8 10 0 10 − 1 0 . 00 0 . 05 0 . 10 0 . 15 0 . 20 0 . 25 0 . 30 0 . 35 0 . 40 J s Matthias Schlaffer 9

  13. Reject heavy flavor > Minimalistic approach: Just cut on largest impact parameter > Require p lab > 5 GeV ⇒ ∆ d 0 � 10 µ m > Smear truth values > Include 5 µ m uncertainty on IP h → u ¯ u h → d ¯ d 0 . 08 h → c ¯ c h → s ¯ s fraction of events / 0 . 5 µ m h → b ¯ b 0 . 06 h → gg W → had. Herwig Pythia 8 0 . 04 0 . 02 0 . 00 0 . 0 2 . 5 5 . 0 7 . 5 10 . 0 12 . 5 15 . 0 17 . 5 20 . 0 d 0 [ µ m] Matthias Schlaffer 10

  14. Setup and assumptions h → jj data ⇒ kinematic separation s -tagger ⇒ limit other bkg cut&count, BDT,...

  15. Setup and assumptions h → jj data ⇒ kinematic separation s -tagger ⇒ limit other bkg cut&count, BDT,... Part I: > Clean sample with hadronic Higgses > Only background other Higgs decays ( h → gg , bb , cc ) > We know which jets originate from the Higgs decay > Generate and shower with PYTHIA and Herwig > No detector simulation Matthias Schlaffer 11

  16. σ Kaon reconstruction Charged kaons: > stable on detector scales > tracking efficiency 95% > Particle ID π ± K ± 2 σ bench marks e.g.: > no ID > ǫ K = 95% ǫ π = 12% some observable Matthias Schlaffer 12

  17. σ Kaon reconstruction Charged kaons: > stable on detector scales > tracking efficiency 95% > Particle ID π ± K ± 3.0 2.5 2 σ bench marks e.g.: dE / dx resolution 2.0 > no ID 10 % 1.5 7 % > ǫ K = 95% 6 % ǫ π = 12% 1.0 5 % 0.5 4 % some observable 0.0 0.1 0.5 1 5 10 50 100 p [ GeV ] Matthias Schlaffer 12

  18. σ Kaon reconstruction Charged kaons: > stable on detector scales > tracking efficiency 95% > Particle ID π ± K ± 3.0 2.5 2 σ bench marks e.g.: dE / dx resolution 2.0 > no ID 10 % 1.5 7 % [1811.10545] > ǫ K = 95% 6 % ǫ π = 12% 1.0 5 % 0.5 4 % some observable 0.0 0.1 0.5 1 5 10 50 100 p [ GeV ] Matthias Schlaffer 12

  19. σ Kaon reconstruction Charged kaons: > stable on detector scales > tracking efficiency 95% > Particle ID IDEA Drift chamber Par7cle"Separa7on"(dE/dx"vs"dN/dx)" π ± K ± 3.0 10" #"of"sigma" µ- π π - Κ Κ -p 2.5 9" 2 σ bench marks e.g.: 8" dE / dx resolution 2.0 > no ID 10 % 7" 1.5 7 % 6" [1811.10545] > ǫ K = 95% 5" 6 % ǫ π = 12% 1.0 4" 5 % 0.5 4 % 3" some observable 2" 0.0 0.1 0.5 1 5 10 50 100 1" p [ GeV ] 0" 0.1" 1" 10" 100" Momentum"[GeV/c]" [FCC-ee CDR] Matthias Schlaffer 12

  20. Kaon reconstruction Neutral kaons: > Decay length ∼ 80 cm > Needs to decay to π ± within 5 mm < R < 1 m > reco efficiency 80% Matthias Schlaffer 13

  21. Efficiencies > impact parameter d 0 < 15 µ m no particle ID 10 − 1 10 − 2 h → u ¯ u ǫ h → d ¯ d h → c ¯ c 10 − 3 h → s ¯ s h → b ¯ b h → gg W → had. Herwig 10 − 4 Pythia 8 0 . 05 0 . 10 0 . 15 0 . 20 0 . 25 J s Matthias Schlaffer 14

  22. Efficiencies > impact parameter d 0 < 15 µ m with particle ID: ǫ K = 95% , ǫ π = 12% 10 − 1 10 − 2 h → u ¯ u ǫ h → d ¯ d 10 − 3 h → c ¯ c h → s ¯ s h → b ¯ b h → gg 10 − 4 W → had. Herwig Pythia 8 0 . 05 0 . 10 0 . 15 0 . 20 0 . 25 J s Matthias Schlaffer 14

  23. Number of events > impact parameter d 0 < 15 µ m no particle ID 10 − 2 10 − 3 h → u ¯ u 10 − 4 h → d ¯ d h → c ¯ c 10 − 5 BR · ǫ h → s ¯ s h → b ¯ b 10 − 6 h → gg Herwig 10 − 7 Pythia 8 10 − 8 10 − 9 0 . 05 0 . 10 0 . 15 0 . 20 0 . 25 J s Matthias Schlaffer 15

  24. Number of events > impact parameter d 0 < 15 µ m with particle ID: ǫ K = 95% , ǫ π = 12% 10 − 2 10 − 3 h → u ¯ u 10 − 4 h → d ¯ d 10 − 5 h → c ¯ c BR · ǫ h → s ¯ s 10 − 6 h → b ¯ b h → gg 10 − 7 Herwig Pythia 8 10 − 8 10 − 9 10 − 10 0 . 05 0 . 10 0 . 15 0 . 20 0 . 25 J s Matthias Schlaffer 15

  25. Results part I d 0 = 0 . 015 mm, ǫ K ± = 0 . 88 d 0 = 0 . 013 mm, ǫ K ± = 0 . 92 1 . 8 Herwig Pythia 8 1 . 6 1 . 4 B √ 1 . 2 S/ 1 . 0 N Higgs = 10 7 0 . 8 0 . 6 0 . 05 0 . 10 0 . 15 0 . 20 0 . 25 J s > strange Yukawa within reach of FCC-ee! > Improvements possible Matthias Schlaffer 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend