szeg taikov inequality for conjugate polynomials
play

SzegTaikov inequality for conjugate polynomials Polina Glazyrina - PowerPoint PPT Presentation

SzegTaikov inequality for conjugate polynomials Polina Glazyrina Ural Federal University Yekaterinburg, Russia Sixth Workshop on Fourier Analysis and Related Fields Hungary, 2017 Problem n F n : f n ( t ) = a 0 + ( a k cos kt + b k


  1. Szegö–Taikov inequality for conjugate polynomials Polina Glazyrina Ural Federal University Yekaterinburg, Russia Sixth Workshop on Fourier Analysis and Related Fields Hungary, 2017

  2. Problem n � F n : f n ( t ) = a 0 + ( a k cos kt + b k sin kt ) , a k , b k ∈ C k = 1 n � � the conjugate to f n : f n ( t ) = ( a k sin kt − b k cos kt ) k = 1 We study the operator n � Λ θ, A f n ( t ) = Aa 0 + ( a k cos ( kt + θ ) + b k sin ( kt + θ )) k = 1 = Aa 0 + cos θ ( f n ( t ) − a 0 ) − sin θ � f n ( t ) , θ ∈ R , A ∈ C � � � Λ θ, A f n � ∞ � C n ( θ, A ) � f n � ∞ , f n ∈ F n .

  3. Some values of Λ θ, A n � Λ θ, A f n ( t ) = Aa 0 + ( a k cos ( kt + θ ) + b k sin ( kt + θ )) k = 1 = Aa 0 + cos θ ( f n ( t ) − a 0 ) − sin θ � f n ( t ) Λ 3 π/ 2 , 0 f n = � Λ 0 , 1 f n = f n , Λ 0 , 0 f n = f n − a 0 , f n Λ θ, cos θ f n ( t ) = D 0 � � cos θ f n ( t ) − sin θ � f n ( t ) Weyl derivative n � k α � � D α f n ( t ) = a k cos ( kt + απ/ 2 ) + b k sin ( kt + απ/ 2 ) . k = 1

  4. Known estimates for C n ( θ, A ) Λ θ, A f n ( t ) = Aa 0 + cos θ ( f n ( t ) − a 0 ) − sin θ � f n ( t ) � � � Λ θ, A f n � ∞ � C n ( θ, A ) � f n � ∞ , f n ∈ F n . C n ( θ, A ) = 2 π | sin θ | ln n + O ( 1 ) as n → ∞ . C 2 m − 1 ( 3 π/ 2 , 0 ) is Lebesgue constant for Lagrange interpolation polynomial based on the zeros of the Chebyshev polynomial of the first kind of degree m . At present, two values of C n ( θ, A ) are known: � f n − a 0 � ∞ � C n ( 0 , 0 ) � f n � ∞ , Fejer, 1913: � � Szegö, 1943: f n � ∞ � C n ( 3 π/ 2 , 0 ) � f n � ∞ .

  5. The result of Fejer for C ( 0 , 0 ) In 1913, Fejér proved that for any f n � 0 , a 0 > 0 f n � a 0 ( n + 1 ) . He also established the relation M � nm , M is the maximum, − m is the minimum of a real polynomial f n with a 0 = 0. These results imply that 2 n � f n − a 0 � ∞ � n + 1 � f n � ∞ , the extremal polynomial is K n ( t ) − � K n � ∞ / 2 , K n is the Fejér kernel � � � sin ( n + 1 ) t / 2 � 2 n � K n ( t ) = 1 k 1 2 + 1 − cos kt = . n + 1 2 ( n + 1 ) sin t / 2 k = 1

  6. The Fejér kernel K n ( 0 ) = n + 1 2 � 2 πℓ � K n = 0 , n + 1 � n + 1 � ± ℓ = 1 , . . . , 2

  7. The result of Szegö for C ( 3 π/ 2 , 0 ) In 1943, Szegö proved that ⌊ n − 1 2 ⌋ � π + 2 πℓ � � 2 � � f n � ∞ � cot � f n � ∞ . n + 1 2 ( n + 1 ) ℓ = 0 Szegö found all extremal polynomials with real coefficients. More precisely, for odd n , an extremal polynomial is unique (up to a non-zero constant factor and a shift of argument) and it is ⌊ n − 1 2 ⌋ � � � � � t − π + 2 πℓ t + π + 2 πℓ f ∗ n ( t ) = K n − K n . n + 1 n + 1 ℓ = 0 For even n , extremal polynomials are given by the relation f ∗∗ n ( t ) = f ∗ n ( t ) + γ K n ( t − π ) , γ ∈ R , | γ | � 1 .

  8. The extremal polynomial for n = 4, γ = 0 . 7

  9. Interpolation formula For any θ ∈ R , A ∈ C , and f n ∈ F n n � 1 Λ θ, A f n ( t ) = ( q ℓ + A ) · f n ( t + t ℓ ) , n + 1 ℓ = 0 where t ℓ = 2 θ + 2 πℓ , ℓ = 0 , . . . , n , n + 1 q ℓ = − sin ( t ℓ / 2 − θ ) = − cos θ + sin θ cot t ℓ / 2 , θ � = 0 mod π, sin ( t ℓ / 2 ) q 0 = n cos θ, q ℓ = − cos θ, ℓ = 1 , . . . , n , θ = 0 mod π. If θ � = 0 mod π or A � = cos θ, then at least n of the coefficients q ℓ + A do not vanish. In particular, q ℓ = 0 if and only if θ = πℓ 1 � ℓ � n − 1 and n or ℓ = θ n 0 � ℓ � n − 2 and π − n − 1 .

  10. Theorem Let θ ∈ [ 0 , 2 π ) and A ∈ C , then n � � � 1 � Λ θ, A f n � | q ℓ + A |� f n � ∞ , f n ∈ F n . (1) ∞ � n + 1 ℓ = 0 If θ � = 0 mod π or A � = cos θ, then inequality (1) turns into an equality only for polynomials n � s ℓ K n ( t − t ∗ − t ℓ ) , t ∗ ∈ R , c ∈ C , f ∗ n ( t ) = c ℓ = 0 where s ℓ = sign ( q ℓ + A ) if q ℓ + A � = 0 and s ℓ is an arbitrary complex number such that | s ℓ | � 1 if q ℓ + A = 0.

  11. Thank you for your attention!

  12. References Fejér, L.: Sur les polynomes harmoniques quelconques, C. R. 157 , 506–509 (1913). Fejér, L.: Sur les polynomes trigonométriques, C. R. 157 , 571–574 (1913). Günttner, R.: On the norms of conjugate trigonometric polynomials, Acta Math. Hungar. 66 (4), 269–273 (1995). Jiang, T.: Asymptotic expansion of norm associated with conjugate trigonometric polynomial, Periodica Mathematica Hungarica 27 (2), 89–93 (1993). Kozko, A.I.: The exact constants in the Bernstein–Zygmund–Szegö inequalities with fractional derivatives and the Jackson–Nikolskii inequality for trigonometric polynomials, East J. Approx. 4 (3), 391–416 (1998). Szegö, G.: On conjugate trigonometric polynomials, American J. Math. 65 (4), 532–536 (1943).

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend