systems of convection diffusion equations
play

Systems of convection-diffusion equations Christian Reibiger, Hans-G - PowerPoint PPT Presentation

Systems of convection-diffusion equations Christian Reibiger, Hans-G org Roos Technical University of Dresden hans-goerg.roos@tu-dresden.de http://math.tu-dresden.de/roos November 17, 2011 Dresden Outline motivation: optimal


  1. Systems of convection-diffusion equations Christian Reibiger, Hans-G¨ org Roos Technical University of Dresden hans-goerg.roos@tu-dresden.de http://math.tu-dresden.de/˜roos November 17, 2011– Dresden

  2. Outline • motivation: optimal control • weakly coupled systems • strongly coupled systems • systems with two small parameters H.-G. Roos, TU Dresden DD-MS 60 1 • First • Prev • Next • Last • Full Screen • Close • Quit

  3. 1.Motivation Consider: � 1 0 + λ � 2 � y − y 0 � 2 2 � q � 2 min y,q J ( y, q ) := min y,q 0 subject to Ly := − ǫy ′′ + ay ′ + by = f + q in (0 , 1) , y (0) = y (1) = 0 . where a, b, y 0 , f are smooth; 0 < ε << 1 and | a ( x ) | ≥ α > 0, λ > 0. It is well-known (cf. Troeltzsch 09) that then there is an adjoint state p such that λq + p = 0 , (1a) L ∗ p = − ǫp ′′ − ap ′ + ( b − a ′ ) p = y − y 0 , (1b) p (0) = p (1) = 0 . H.-G. Roos, TU Dresden DD-MS 60 2 • First • Prev • Next • Last • Full Screen • Close • Quit

  4. Motivation Error estimates (Becker, Vexler 07, Hinze, Yan, Zhou 09, Lube,Tews 10): � q − q h � 0 + � y − y h � 0 ≤ C ( h 3 / 2 + ε 1 / 2 h )( | y | 2 + | p | 2 ) based on 0 ≤ 1 � y − y h � 2 0 + λ � q − q h � 2 p h � 2 y h � 2 λ � p − ˜ 0 + � y − ˜ 0 (in the second step also estimates in stronger norms) Heinkenschloss, Leykekhman 10: SUPG only first order even away from the boundary layer In sharp contrast to the case of a single equation?? What about the layer structure ? H.-G. Roos, TU Dresden DD-MS 60 3 • First • Prev • Next • Last • Full Screen • Close • Quit

  5. 2.Weakly coupled systems � � � � − ǫu ′′ + a 1 u ′ + b 11 u 1 + b 12 u 2 f 1 , u 1 (0) = u 1 (1)= 0 , 1 1 = − ǫu ′′ − a 2 u ′ − b 21 u 1 + b 22 u 2 f 2 u 2 (0) = u 2 (1)= 0 . 2 2 Assuming a 1 , a 2 ≥ α > 0 , b 11 , b 22 ≥ 0 , b 12 b 21 > 0 , | b 12 | , | b 21 | ≥ β > 0 Linss 07: upwind FDM, information about first order derivatives Linss/Stynes 09: survey sp systems: CMAM, 9(2009), 165-191 Theorem : The solution of the given system can be decomposed in u 1 = S 1 + E 10 + E 11 , u 2 = S 2 + E 20 + E 21 with (for k ≤ 2) � � � � � S ( k ) � S ( k ) 0 , 0 ≤ C, � � � � 1 2 � � � � � � � E ( k ) � E ( k ) � ≤ Cǫ − k e − α 1 − x ǫ . � ≤ Cǫ 1 − k e − α x 10 ( x ) ǫ , 11 ( x ) � � � � H.-G. Roos, TU Dresden DD-MS 60 4 • First • Prev • Next • Last • Full Screen • Close • Quit

  6. Weakly coupled systems σ 0 = 2 ǫ ln N /β σ 1 = 1 − 2 ǫ ln N/β u 1 u 2 Used Shishkin mesh Theorem : The solution of the given system is bounded by � u − u N � ǫ ≤ CN − 1 ln N Proof is based on standard results for the interpolation error. Especially the estimates 10 | 1 ≤ ˜ | E 10 − E I Ch | E 10 | 2 ≤ Cǫ − 1 / 2 N − 1 , � E 10 − E I 10 � 0 ≤ C min { ǫ 1 / 2 N − 1 , ǫ − 1 / 2 N − 2 } ≤ CN − 3 / 2 for the weak layer term H.-G. Roos, TU Dresden DD-MS 60 5 • First • Prev • Next • Last • Full Screen • Close • Quit

  7. Weakly coupled systems ε = 1 e − 4 ε = 1 e − 8 0 0 10 10 −1 10 −2 10 −2 10 −3 10 −4 10 error error −4 10 −6 10 −5 10 || u − u N || 0 || u − u N || 0 || u − u N || ε || u − u N || ε −6 || u N − u I || ε || u N − u I || ε 10 −8 10 ln( N ) /N ln( N ) /N (ln( N ) /N ) 2 (ln( N ) /N ) 2 −7 10 1 2 3 4 5 1 2 3 4 5 10 10 10 10 10 10 10 10 10 10 N N Error of the linear FEM on a one-sided Shishkin mesh H.-G. Roos, TU Dresden DD-MS 60 6 • First • Prev • Next • Last • Full Screen • Close • Quit

  8. Weakly coupled systems σ 0 = 2 ǫ ln N /β σ 1 = 1 − 2 ǫ ln N/β u 1 u 2 Used two-sided Shishkin mesh ε = 1 e − 4 ε = 1 e − 8 0 0 10 10 −2 −2 10 10 −4 10 −4 10 error error −6 10 −6 10 −8 10 || u − u N || 0 || u − u N || 0 −8 10 || u − u N || ε || u − u N || ε || u N − u I || ε || u N − u I || ε −10 ln( N ) /N ln( N ) /N 10 (ln( N ) /N ) 2 (ln( N ) /N ) 2 −10 10 1 2 3 4 5 1 2 3 4 5 10 10 10 10 10 10 10 10 10 10 N N Error of the linear FEM on a two-sided Shishkin mesh H.-G. Roos, TU Dresden DD-MS 60 7 • First • Prev • Next • Last • Full Screen • Close • Quit

  9. 3.Strongly coupled systems − εu ′′ 1 − b 11 u ′ 1 − b 12 u ′ 2 + a 11 u 1 + a 12 u 2 = f 1 , (2a) − εu ′′ 2 − b 21 u ′ 1 − b 22 u ′ 2 + a 21 u 1 + a 22 u 2 = f 2 , (2b) subject to the boundary conditions u 1 (0) = u 2 (0) = u 1 (1) = u 2 (1) = 0 . Introducing the corresponding matrices B and A and vectors u and f the system takes the form Lu := − εu ′′ − Bu ′ + Au = f. O’Rordan, Stynes 09: both eigenvalues of B positive (two overlapping layers at x = 0 Linss 09: no information on pointwise derivatives, layer structure ? H.-G. Roos, TU Dresden DD-MS 60 8 • First • Prev • Next • Last • Full Screen • Close • Quit

  10. Strongly coupled systems assumptions: ( V 1 ) B is symmetric. ( V 2 ) A + 1 / 2 B ′ is positive semidefinite. ( V 3 ) The eigenvalues of B satisfy λ 1 ( x ) > 0 , λ 2 ( x ) < 0 for all x. We have ε 3 / 2 | u | 2 + ε 1 / 2 | u | 1 ≤ � f � 0 . asymptotic approximation: � � � � α 1 α 2 exp( − ˜ exp(˜ u 0 as := w 0 + w h ˜ c 0 + d 1 λ 1 x/ε ) + d 2 λ 2 (1 − x ) /ε ) . β 1 β 2 The unknown vector ˜ c 0 and d 1 , d 2 are determined by the boundary condi- tions. Consequently: The reduced solution does not satisfies the boundary con- ditions, both solution components do have layers at x = 0 and at x = 1. H.-G. Roos, TU Dresden DD-MS 60 9 • First • Prev • Next • Last • Full Screen • Close • Quit

  11. Strongly coupled systems Example: � � � � − 1 1 1 − εu ′′ − u ′ = 0 3 2 with � � � � � � x/ 3 + 1 / 6 1 1 u 0 as := + d 1 exp( − 3 x/ε ) + d 2 exp( − (1 − x ) /ε ) . − 2 x/ 3 + 2 / 3 4 0 Using the next term of the asymptotic approximation and the a priori esti- mate above to estimate the remainder we can prove: u allows a decomposition u = S + E 1 + E 2 with | S | 2 ≤ C, where the layer terms satisfy 1 | ≤ Cε − k exp( − ˜ 2 | ≤ Cε − k exp( − ˜ | E k | E k λ 1 x/ε ) , λ 2 (1 − x ) /ε ) . H.-G. Roos, TU Dresden DD-MS 60 10 • First • Prev • Next • Last • Full Screen • Close • Quit

  12. 4.Strongly coupled systems: two small pa- rameters − ε 1 u ′′ 1 + b 11 u ′ 1 − b 12 u ′ 2 + a 11 u 1 + a 12 u 2 = f 1 , (3a) − ε 2 u ′′ 2 − b 21 u ′ 1 − b 22 u ′ 2 + a 21 u 1 + a 22 u 2 = f 2 , (3b) subject to the boundary conditions u 1 (0) = u 2 (0) = u 1 (1) = u 2 (1) = 0 . Introducing the corresponding matrices B and A and vectors u and f the system takes the form Lu := − diag( ε 1 , ε 2 ) u ′′ − Bu ′ + Au = f. assumptions: • 0 < ε 1 < ε 2 << 1 • B constant, b 11 > 0 , b 22 > 0 H.-G. Roos, TU Dresden DD-MS 60 11 • First • Prev • Next • Last • Full Screen • Close • Quit

  13. Strongly coupled systems: two small parameters Example (Linß SINUM 09): − ε 1 u ′′ 1 + u ′ 1 − u ′ 2 = 1 − ε 2 u ′′ 2 − 3 u ′ 2 = 2 , u 1 (0) = u 1 (1) = 0 , u 2 (0) = u 2 (1) = 0 asymptotic approximation: � x 3 + 2 1 � − 2 1 ε 1 � � 3 ε 2 − (1 3+2 1 � � 1 1 e − 1 − x 1+3 ε 1 3 e − x ε 1 . u as ( x ) = ˜ ) ε 2 1 + 3 ε 1 1 + 3 ε 1 0 − 2 3 x + 2 3 1 + 3 ε 2 3 ε 2 ε 2 3 Thus, the ”reduced” solution � x 3 + 2 1 � 1+3 ε 1 3 u 0 ( x ) = ε 2 − 2 3 x + 2 3 varies with ε 1 /ε 2 . Questions: ′′ reduced ′′ solution ? layer structure ? H.-G. Roos, TU Dresden DD-MS 60 12 • First • Prev • Next • Last • Full Screen • Close • Quit

  14. Strongly coupled systems: two small parameters asymptotic approximation: u as ( x ) = u p ( x ) + u h ( x ) c + d 1 V 1 e − λ 1 x + d 2 V 2 e λ 2 (1 − x ) • u p ( x ) + u h ( x ) c general solution of the reduced system • λ 1 , λ 2 eigenvalues of � � − b 11 /ε 1 b 12 /ε 1 ˜ B = . b 21 /ε 2 b 22 /ε 2 • V 1 , V 2 scaled eigenvectors: ε 1 � � � ε 1 λ 2 − b 2 � b 12 ε 2 V 1 := , V 2 := ε 1 b 11 + ε 1 λ 1 b 21 ε 2 . Assuming ε 1 << ε 2 < 1 we have ε 1 λ 2 = − b 11 + 0( ε 1 D ) , ε 2 λ 1 = b 11 + 0( ε 1 ε 2 ε 2 ) H.-G. Roos, TU Dresden DD-MS 60 13 • First • Prev • Next • Last • Full Screen • Close • Quit

  15. Strongly coupled systems: two small parameters main result: solution decomposition d 1 e − λ 1 x + ˜ u 1 = S 1 + ˜ d 2 e λ 2 (1 − x ) with � S ′ � S 1 � ∞ ≤ C, 1 � ∞ ≤ C. steps of the proof: • study the bvp for the remainder u − u as • apply the strong stability result from Linß 09: ||| u ||| ∞ ≤ C || f || L 1 ≤ C || f || − 1 , ∞ with ||| v ||| i = max ( ε i � v ′ i � ∞ , � v i � ∞ ) • insert the solution decomposition obtained for u 2 into the first equation and use Kelloggs’s technique H.-G. Roos, TU Dresden DD-MS 60 14 • First • Prev • Next • Last • Full Screen • Close • Quit

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend