systems biology mathematics for biologists
play

Systems Biology: Mathematics for Biologists Kirsten ten Tusscher, - PowerPoint PPT Presentation

Systems Biology: Mathematics for Biologists Kirsten ten Tusscher, Theoretical Biology, UU Chapter 3 Equilibrium types in 2D systems Equilibrium types 1D systems : Two regions, left and right of an equilibrium. Arrows can point away or toward


  1. Systems Biology: Mathematics for Biologists Kirsten ten Tusscher, Theoretical Biology, UU

  2. Chapter 3 Equilibrium types in 2D systems

  3. Equilibrium types 1D systems : Two regions, left and right of an equilibrium. Arrows can point away or toward the equilibrium. So two equilibrium types possible: stable and unstable. At bifurcation point special case: stable and unstable sides.

  4. Equilibrium types 1D systems : Two regions, left and right of an equilibrium. Arrows can point away or toward the equilibrium. So two equilibrium types possible: stable and unstable. At bifurcation point special case: stable and unstable sides. 2D systems : Four regions around an equilibrium point. Arrows can point away or toward the equilibrium, or both ! Six different equilibrium types possible, two of which are stable.

  5. Equilibrium types: stable node � dx dt = − 2 x + y dy dt = x − 2 y y y x x

  6. Equilibrium types: stable node Null-clines: � dx dt = − 2 x + y y = 2 x dy y = 1 2 x dt = x − 2 y y y x x

  7. Equilibrium types: stable node fill in point ( 1 , 0 ) : Null-clines: � dx dx dt = − 2 x + y y = 2 x dt = − 2 ∗ 1 + 0 = − 2 < 0 so ← dy y = 1 dy 2 x dt = x − 2 y dt = 1 − 0 = 1 > 0 so ↑ y y x x

  8. Equilibrium types: stable node fill in point ( 1 , 0 ) : Null-clines: � dx dx dt = − 2 x + y y = 2 x dt = − 2 ∗ 1 + 0 = − 2 < 0 so ← dy y = 1 dy 2 x dt = x − 2 y dt = 1 − 0 = 1 > 0 so ↑ y y x x Vectorfield: all arrows point to equilibrium → stable node

  9. Equilibrium types: stable node fill in point ( 1 , 0 ) : Null-clines: � dx dx dt = − 2 x + y y = 2 x dt = − 2 ∗ 1 + 0 = − 2 < 0 so ← dy y = 1 dy 2 x dt = x − 2 y dt = 1 − 0 = 1 > 0 so ↑ y y x x Vectorfield: all arrows point to equilibrium → stable node Phase portrait gives same information as numerical solutions

  10. Equilibrium types: stable node (2) � dx dt = − 2 x − y dy dt = − x − 2 y y y x x

  11. Equilibrium types: stable node (2) Null-clines: � dx dt = − 2 x − y y = − 2 x dy y = − 1 2 x dt = − x − 2 y y y x x

  12. Equilibrium types: stable node (2) fill in point ( 1 , 0 ) : Null-clines: � dx dx dt = − 2 x − y y = − 2 x dt = − 2 ∗ 1 − 0 = − 2 < 0 so ← dy y = − 1 dy 2 x dt = − x − 2 y dt = − 1 − 2 ∗ 0 = − 1 < 0 so ↓ y y x x

  13. Equilibrium types: stable node (2) fill in point ( 1 , 0 ) : Null-clines: � dx dx dt = − 2 x − y y = − 2 x dt = − 2 ∗ 1 − 0 = − 2 < 0 so ← dy y = − 1 dy 2 x dt = − x − 2 y dt = − 1 − 2 ∗ 0 = − 1 < 0 so ↓ y y x x Vectorfield: all arrows point to equilibrium → stable node

  14. Equilibrium types: stable node (2) fill in point ( 1 , 0 ) : Null-clines: � dx dx dt = − 2 x − y y = − 2 x dt = − 2 ∗ 1 − 0 = − 2 < 0 so ← dy y = − 1 dy 2 x dt = − x − 2 y dt = − 1 − 2 ∗ 0 = − 1 < 0 so ↓ y y x x Vectorfield: all arrows point to equilibrium → stable node Compare : different nullclines, similar vectorfield!

  15. Equilibrium types: unstable node � dx dt = 2 x + y dy dt = x + 2 y y y x x

  16. Equilibrium types: unstable node Null-clines: � dx dt = 2 x + y y = − 2 x dy y = − 1 2 x dt = x + 2 y y y x x

  17. Equilibrium types: unstable node fill in ( 1 , 0 ) : Null-clines: � dx dx dt = 2 x + y y = − 2 x dt = 2 ∗ 1 + 0 = 2 > 0 so → dy y = − 1 dy 2 x dt = x + 2 y dt = 1 + 2 ∗ 0 = 1 > 0 so ↑ y y x x

  18. Equilibrium types: unstable node fill in ( 1 , 0 ) : Null-clines: � dx dx dt = 2 x + y y = − 2 x dt = 2 ∗ 1 + 0 = 2 > 0 so → dy y = − 1 dy 2 x dt = x + 2 y dt = 1 + 2 ∗ 0 = 1 > 0 so ↑ y y x x Vectorfield: all arrows away from equilibrium → unstable node

  19. Equilibrium types: unstable node fill in ( 1 , 0 ) : Null-clines: � dx dx dt = 2 x + y y = − 2 x dt = 2 ∗ 1 + 0 = 2 > 0 so → dy y = − 1 dy 2 x dt = x + 2 y dt = 1 + 2 ∗ 0 = 1 > 0 so ↑ y y x x Vectorfield: all arrows away from equilibrium → unstable node Compare : same nullclines, very different vectorfield

  20. Equilibrium types: saddle point � dx dt = − x − 2 y dy dt = − 2 x − y y y x x

  21. Equilibrium types: saddle point Null-clines: � dx dt = − x − 2 y y = − 1 2 x dy dt = − 2 x − y y = − 2 x y y x x

  22. Equilibrium types: saddle point fill in ( 1 , 0 ) : Null-clines: � dx dx dt = − x − 2 y y = − 1 dt = − 1 − 2 ∗ 0 = − 1 < 0 so ← 2 x dy dy dt = − 2 x − y y = − 2 x dt = − 2 ∗ 1 − 0 = − 2 < 0 s0 ↓ y y x x

  23. Equilibrium types: saddle point fill in ( 1 , 0 ) : Null-clines: � dx dx dt = − x − 2 y y = − 1 dt = − 1 − 2 ∗ 0 = − 1 < 0 so ← 2 x dy dy dt = − 2 x − y y = − 2 x dt = − 2 ∗ 1 − 0 = − 2 < 0 s0 ↓ y y x x Vectorfield: one vector-pair points towards, one points away from equilibrium: stable and unstable direction → saddle point

  24. Equilibrium types: stable spiral � dx dt = − x + 2 y dy dt = − 2 x − y x , y y y x t x

  25. Equilibrium types: stable spiral Null-clines: � dx y = 1 dt = − x + 2 y 2 x dy dt = − 2 x − y y = − 2 x x , y y y x t x

  26. Equilibrium types: stable spiral fill in ( 1 , 0 ) : Null-clines: � dx dx y = 1 dt = − 1 + 2 ∗ 0 = − 1 < 0 so ← dt = − x + 2 y 2 x dy dy dt = − 2 x − y y = − 2 x dt = − 2 ∗ 1 − 0 = − 2 < 0 so ↓ x , y y y x t x

  27. Equilibrium types: stable spiral fill in ( 1 , 0 ) : Null-clines: � dx dx y = 1 dt = − 1 + 2 ∗ 0 = − 1 < 0 so ← dt = − x + 2 y 2 x dy dy dt = − 2 x − y y = − 2 x dt = − 2 ∗ 1 − 0 = − 2 < 0 so ↓ x , y y y x t x Inward spiraling motion towards equilibrium Oscillations with decreasing amplitude

  28. Equilibrium types: stable spiral fill in ( 1 , 0 ) : Null-clines: � dx dx y = 1 dt = − 1 + 2 ∗ 0 = − 1 < 0 so ← dt = − x + 2 y 2 x dy dy dt = − 2 x − y y = − 2 x dt = − 2 ∗ 1 − 0 = − 2 < 0 so ↓ x , y y y x t x Inward spiraling motion towards equilibrium Oscillations with decreasing amplitude Vectorfield: arrows only suggest rotation!

  29. Equilibrium types: stable spiral fill in ( 1 , 0 ) : Null-clines: � dx dx y = 1 dt = − 1 + 2 ∗ 0 = − 1 < 0 so ← dt = − x + 2 y 2 x dy dy dt = − 2 x − y y = − 2 x dt = − 2 ∗ 1 − 0 = − 2 < 0 so ↓ x , y y y x t x Inward spiraling motion towards equilibrium Oscillations with decreasing amplitude Vectorfield: arrows only suggest rotation! Phase portrait gives less information than numerical solutions...

  30. Equilibrium types: unstable spiral � dx dt = x + 2 y dy dt = − 2 x + y x , y y y x t x

  31. Equilibrium types: unstable spiral Null-clines: � dx dt = x + 2 y y = − 1 2 x dy dt = − 2 x + y y = 2 x x , y y y x t x

  32. Equilibrium types: unstable spiral fill in ( 1 , 0 ) : Null-clines: � dx dx dt = x + 2 y y = − 1 dt = 1 + 2 ∗ 0 = 1 > 0 so → 2 x dy dy dt = − 2 x + y y = 2 x dt = − 2 ∗ 1 + 0 = − 2 < 0 so ↓ x , y y y x t x

  33. Equilibrium types: unstable spiral fill in ( 1 , 0 ) : Null-clines: � dx dx dt = x + 2 y y = − 1 dt = 1 + 2 ∗ 0 = 1 > 0 so → 2 x dy dy dt = − 2 x + y y = 2 x dt = − 2 ∗ 1 + 0 = − 2 < 0 so ↓ x , y y y x t x Outward spiraling motion away from equilibrium Oscillations with increasing amplitude

  34. Equilibrium types: unstable spiral fill in ( 1 , 0 ) : Null-clines: � dx dx dt = x + 2 y y = − 1 dt = 1 + 2 ∗ 0 = 1 > 0 so → 2 x dy dy dt = − 2 x + y y = 2 x dt = − 2 ∗ 1 + 0 = − 2 < 0 so ↓ x , y y y x t x Outward spiraling motion away from equilibrium Oscillations with increasing amplitude Vectorfield: arrows again only suggest rotation!

  35. Equilibrium types: center point � dx dt = x + 2 y dy dt = − 2 x − y x , y y y x t x

  36. Equilibrium types: center point Null-clines: � dx dt = x + 2 y y = − 1 2 x dy dt = − 2 x − y y = − 2 x x , y y y x t x

  37. Equilibrium types: center point fill in ( 1 , 0 ) : Null-clines: � dx dx dt = x + 2 y y = − 1 dt = 1 + 2 ∗ 0 = 1 > 0 so → 2 x dy dy dt = − 2 x − y y = − 2 x dt = − 2 ∗ 1 − 0 = − 2 < 0 so ↓ x , y y y x t x

  38. Equilibrium types: center point fill in ( 1 , 0 ) : Null-clines: � dx dx dt = x + 2 y y = − 1 dt = 1 + 2 ∗ 0 = 1 > 0 so → 2 x dy dy dt = − 2 x − y y = − 2 x dt = − 2 ∗ 1 − 0 = − 2 < 0 so ↓ x , y y y x t x Rotation around equilibrium at constant distance Oscillations amplitude determined by initial conditions

  39. Equilibrium types: center point fill in ( 1 , 0 ) : Null-clines: � dx dx dt = x + 2 y y = − 1 dt = 1 + 2 ∗ 0 = 1 > 0 so → 2 x dy dy dt = − 2 x − y y = − 2 x dt = − 2 ∗ 1 − 0 = − 2 < 0 so ↓ x , y y y x t x Rotation around equilibrium at constant distance Oscillations amplitude determined by initial conditions Vectorfield: arrows again only suggest rotation!

  40. Vectorfield insufficient Sometimes the vectorfield does not give enough information:

  41. Vectorfield insufficient Sometimes the vectorfield does not give enough information:

  42. Vectorfield insufficient Sometimes the vectorfield does not give enough information:

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend