systems biology mathematics for biologists
play

Systems Biology: Mathematics for Biologists Kirsten ten Tusscher, - PowerPoint PPT Presentation

Systems Biology: Mathematics for Biologists Kirsten ten Tusscher, Theoretical Biology, UU Chapter 4 Limit cycles N 0 20 0 2.5 5 R N t 5 10 10 15 20 0 2.5 5 R 15 5 0 R t 5 2.5 0 N 5 2.5 0 The classical


  1. Systems Biology: Mathematics for Biologists Kirsten ten Tusscher, Theoretical Biology, UU

  2. Chapter 4 Limit cycles

  3. N 0 20 0 2.5 5 R N t 5 10 10 15 20 0 2.5 5 R 15 5 0 R t 5 2.5 0 N 5 2.5 0 The “classical” Lotka-Volterra model Consider the classical Lotka-Volterra predator-prey model. � d R d t = aR − bNR d N d t = cNR − dN with a = 1, b = 0 . 5, c = 0 . 25, d = 0 . 43. Note: no density-dependence, no saturation of predators.

  4. N 0 20 0 2.5 5 R N t 5 10 10 15 20 0 2.5 5 R 15 5 0 R t 5 2.5 0 N 5 2.5 0 The “classical” Lotka-Volterra model Consider the classical Lotka-Volterra predator-prey model. � d R d t = aR − bNR d N d t = cNR − dN with a = 1, b = 0 . 5, c = 0 . 25, d = 0 . 43. Note: no density-dependence, no saturation of predators.

  5. 10 5 t N R 5 2.5 0 20 15 10 5 0 t 2.5 5 0 N 5 2.5 0 R 15 20 0 2.5 5 R N 0 The “classical” Lotka-Volterra model Consider the classical Lotka-Volterra predator-prey model. � d R d t = aR − bNR d N d t = cNR − dN with a = 1, b = 0 . 5, c = 0 . 25, d = 0 . 43. Note: no density-dependence, no saturation of predators. zero self-feedback due to horiz./vert. null-clines!

  6. 10 5 t N R 5 2.5 0 20 15 10 5 0 t 2.5 5 0 N 5 2.5 0 R 15 20 0 2.5 5 R N 0 The “classical” Lotka-Volterra model Consider the classical Lotka-Volterra predator-prey model. � d R d t = aR − bNR d N d t = cNR − dN with a = 1, b = 0 . 5, c = 0 . 25, d = 0 . 43. Note: no density-dependence, no saturation of predators. zero self-feedback due to horiz./vert. null-clines! neutrally stable equilibrium: center point

  7. 15 5 t N R 5 2.5 0 20 10 10 5 0 t 2.5 5 0 N 5 2.5 0 R 15 20 0 2.5 5 R N 0 The “classical” Lotka-Volterra model Consider the classical Lotka-Volterra predator-prey model. � d R d t = aR − bNR d N d t = cNR − dN with a = 1, b = 0 . 5, c = 0 . 25, d = 0 . 43. Note: no density-dependence, no saturation of predators. zero self-feedback due to horiz./vert. null-clines! neutrally stable equilibrium: center point initial conditions determine amplitude oscillations

  8. Let us consider a more realistic LV-model First, we include density dependent growth of the prey:

  9. Let us consider a more realistic LV-model First, we include density dependent growth of the prey: � d R d t = rR ( 1 − R K ) − bNR d N d t = cNR − dN

  10. Let us consider a more realistic LV-model First, we include density dependent growth of the prey: � d R d t = rR ( 1 − R K ) − bNR d N d t = cNR − dN Second, we include a saturated functional response:

  11. Let us consider a more realistic LV-model First, we include density dependent growth of the prey: � d R d t = rR ( 1 − R K ) − bNR d N d t = cNR − dN Second, we include a saturated functional response: d R d t = rR ( 1 − R � K ) − bNF R with F = d N d t = bNF − dN h + R

  12. Let us consider a more realistic LV-model First, we include density dependent growth of the prey: � d R d t = rR ( 1 − R K ) − bNR d N d t = cNR − dN Second, we include a saturated functional response: d R d t = rR ( 1 − R � K ) − bNF R with F = d N d t = bNF − dN h + R R Substituting F = h + R this gives us: d R d t = rR ( 1 − R K ) − bNR � h + R d N d t = bNR h + R − dN

  13. Let us consider a more realistic LV-model First, we include density dependent growth of the prey: � d R d t = rR ( 1 − R K ) − bNR d N d t = cNR − dN Second, we include a saturated functional response: d R d t = rR ( 1 − R � K ) − bNF R with F = d N d t = bNF − dN h + R R Substituting F = h + R this gives us: d R d t = rR ( 1 − R K ) − bNR � h + R d N d t = bNR h + R − dN Let us study this system for: b = 0 . 5, d = 0 . 43, h = 0 . 1, r = 1 and different values of K .

  14. Equilibria of the realistc LV-model Let us find equilibria:

  15. Equilibria of the realistc LV-model Let us find equilibria: Start with the second, simpler equation: bNR dh h + R − dN = 0 gives us N = 0 and R = b − d ≈ 0 . 61

  16. Equilibria of the realistc LV-model Let us find equilibria: Start with the second, simpler equation: bNR dh h + R − dN = 0 gives us N = 0 and R = b − d ≈ 0 . 61 Substitute N = 0 in d R d t = 0: rR ( 1 − R K ) = 0 gives us R = 0 and R = K

  17. Equilibria of the realistc LV-model Let us find equilibria: Start with the second, simpler equation: bNR dh h + R − dN = 0 gives us N = 0 and R = b − d ≈ 0 . 61 Substitute N = 0 in d R d t = 0: rR ( 1 − R K ) = 0 gives us R = 0 and R = K dh dh bN b − d in d R dh dh Substitute R = d t = 0: r b − d ( 1 − b − d K ) − b − d b − d = 0 dh h +

  18. Equilibria of the realistc LV-model Let us find equilibria: Start with the second, simpler equation: bNR dh h + R − dN = 0 gives us N = 0 and R = b − d ≈ 0 . 61 Substitute N = 0 in d R d t = 0: rR ( 1 − R K ) = 0 gives us R = 0 and R = K dh dh bN b − d in d R dh dh Substitute R = d t = 0: r b − d ( 1 − b − d K ) − b − d = 0 b − d dh h + dh bN Rewrite as: r ( 1 − b − d K ) − b − d = 0 dh h +

  19. Equilibria of the realistc LV-model Let us find equilibria: Start with the second, simpler equation: bNR dh h + R − dN = 0 gives us N = 0 and R = b − d ≈ 0 . 61 Substitute N = 0 in d R d t = 0: rR ( 1 − R K ) = 0 gives us R = 0 and R = K dh dh bN b − d in d R dh dh Substitute R = d t = 0: r b − d ( 1 − b − d K ) − b − d b − d = 0 dh h + dh bN Rewrite as: r ( 1 − b − d K ) − b − d = 0 dh h + dh bN Reorder into: r ( 1 − b − d K ) = dh h + b − d

  20. Equilibria of the realistc LV-model Let us find equilibria: Start with the second, simpler equation: bNR dh h + R − dN = 0 gives us N = 0 and R = b − d ≈ 0 . 61 Substitute N = 0 in d R d t = 0: rR ( 1 − R K ) = 0 gives us R = 0 and R = K dh dh bN b − d in d R dh dh Substitute R = d t = 0: r b − d ( 1 − b − d K ) − b − d = 0 b − d dh h + dh bN Rewrite as: r ( 1 − b − d K ) − b − d = 0 dh h + dh bN Reorder into: r ( 1 − b − d K ) = dh h + b − d dh Finally this gives us: N = r b − d ) ≈ 1 . 43 ( 1 − 0 . 61 dh b ( 1 − K )( h + K ) b − d

  21. Equilibria of the realistc LV-model Let us find equilibria: Start with the second, simpler equation: bNR dh h + R − dN = 0 gives us N = 0 and R = b − d ≈ 0 . 61 Substitute N = 0 in d R d t = 0: rR ( 1 − R K ) = 0 gives us R = 0 and R = K dh dh bN b − d in d R dh dh Substitute R = d t = 0: r b − d ( 1 − b − d K ) − b − d b − d = 0 dh h + dh bN Rewrite as: r ( 1 − b − d K ) − b − d = 0 dh h + dh bN Reorder into: r ( 1 − b − d K ) = dh h + b − d dh Finally this gives us: N = r b − d ) ≈ 1 . 43 ( 1 − 0 . 61 dh b ( 1 − K )( h + K ) b − d Thus the equilibria are: ( 0 , 0 ) , ( 0 , K ) , dh ( dh b − d , r b − d )) ≈ ( 0 . 61 , 1 . 43 ( 1 − 0 . 61 dh K )) ≈ ( 0 . 61 , 1 . 43 − 0 . 88 b ( 1 − b − d K )( h + K )

  22. Null-clines of the realistic LV-model Let us determine the null-clines of this system: d R d t = rR ( 1 − R K ) − bNR h + R = 0 null-cline 1: R = 0 null-cline 2: N = r b ( 1 − R K )( h + R ) = ( 1 − R K )( 0 . 2 + 2 R ) (parabola) intersection points: ( K , 0 ) and ( − h , 0 ) = ( − 0 . 1 , 0 ) location of top R = − h + K 2 d N d t = bNR h + R − dN = 0 null-cline 1: N = 0 dh null-cline 2: R = b − d ≈ 0 . 61

  23. R null-clines and prey vectorfield R null-clines arre: R = 0 and N = r b ( 1 − R K )( h + R ) = ( 1 − R K )( 0 . 2 + 2 R )

  24. R null-clines and prey vectorfield R null-clines arre: R = 0 and N = r b ( 1 − R K )( h + R ) = ( 1 − R K )( 0 . 2 + 2 R ) Resulting in the picture:

  25. R null-clines and prey vectorfield R null-clines arre: R = 0 and N = r b ( 1 − R K )( h + R ) = ( 1 − R K )( 0 . 2 + 2 R ) Resulting in the picture: Determine the prey vectorfield relative to N = ( 1 − R K )( 0 . 2 + 2 R ) : • below it there are few predators so prey will increase: ← • above it there are many predators so prey will decrease: →

  26. N null-clines and predator vectorfield N null-clines are: dh N = 0 and R = b − d ≈ 0 . 61

  27. N null-clines and predator vectorfield N null-clines are: dh N = 0 and R = b − d ≈ 0 . 61 Resulting in the picture:

  28. N null-clines and predator vectorfield N null-clines are: dh N = 0 and R = b − d ≈ 0 . 61 Resulting in the picture: Determine the predator vectorfield relative to R ≈ 0 . 61: • left of it there are few prey so predators will decrease: ↓ • right of it there are many prey so predators will increase: ↑

  29. Parameter change in LV-model What happens if we start at low K and gradually increase K ?

  30. Parameter change in LV-model What happens if we start at low K and gradually increase K ? How many qualitatively different situations do you expect?

  31. Parameter change in LV-model What happens if we start at low K and gradually increase K ? How many qualitatively different situations do you expect? 0.7 First, assume K < 0 . 61 N (predator) 0.35 0 0 0.35 0.7 R (prey) No non-trivial equilibrium.

  32. Parameter change in LV-model What happens if we start at low K and gradually increase K ? How many qualitatively different situations do you expect? 0.7 First, assume K < 0 . 61 N (predator) 0.35 0 0 0.35 0.7 R (prey) No non-trivial equilibrium. 1 Next, assume K > 0 . 61 N (predator) 0.5 0 0 0.5 1 R (prey) Non-trivial equilibrium.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend