systematic study of mass loss in the evolution of massive
play

Systematic Study of Mass Loss in the Evolution of Massive Stars - PowerPoint PPT Presentation

Tesi di Laurea Magistrale Universit` a di Pisa - Dipartimento di Fisica 03/06/2015 Systematic Study of Mass Loss in the Evolution of Massive Stars Mathieu Renzo advisors: Prof. S. N. Shore, Prof. C. D. Ott 1 / 27 Outline Introduction


  1. Tesi di Laurea Magistrale Universit` a di Pisa - Dipartimento di Fisica 03/06/2015 Systematic Study of Mass Loss in the Evolution of Massive Stars Mathieu Renzo advisors: Prof. S. N. Shore, Prof. C. D. Ott 1 / 27

  2. Outline Introduction • Importance of Massive Stars • How do they lose mass? Stellar Winds • Outline of the Theory • Methods • Results: Amplitude of the Uncertainty • Results: Blue Loops in 15 M ⊙ models Impulsive Mass Loss Events • Motivations for This Study • Methods • Results: Wind + Impulsive Mass Loss • Results: pre-SN Stripped Structures Conclusions 2 / 27

  3. Outline Introduction • Importance of Massive Stars • How do they lose mass? Stellar Winds • Outline of the Theory • Methods • Results: Amplitude of the Uncertainty • Results: Blue Loops in 15 M ⊙ models Impulsive Mass Loss Events • Motivations for This Study • Methods • Results: Wind + Impulsive Mass Loss • Results: pre-SN Stripped Structures Conclusions 3 / 27

  4. Why are Massive Stars Important? M ZAMS � 8 − 10 M ⊙ • Nucleosynthesis • Chemical Evolution of Galaxies • Effects on Star Formation • Re-ionization Epoch • Observations of Farthest Galaxies • Catastrophic Events 4 / 27

  5. Mass Loss – Why does it Matter... ... for the environment of the stars? • Pollution of the InterStellar Medium (ISM) • Tailoring of the CircumStellar Material (CSM) • Effects on the Star Formation ... for the stellar structure? • Evolutionary Timescales • Final Fate (BH, NS or WD?) • Light Curve and Explosion Spectrum • Appearance: CSM and Wind Features (e.g. WR) • Role in the Solution of the RSG Problem ? 5 / 27

  6. Possible Mass Loss Mechanisms Radiative Driving ⇐ Stellar Winds Dynamical Instabilities ⇐ LBVs, Impulsive Mass Loss, Pulsations, Super-Eddington Winds Binary interactions ⇐ Roche Lobe OverFlows Figure: η Carinae. (RLOF) 6 / 27

  7. Outline Introduction • Importance of Massive Stars • How do they lose mass? Stellar Winds • Outline of the Theory • Methods • Results: Amplitude of the Uncertainty • Results: Blue Loops in 15 M ⊙ models Impulsive Mass Loss Events • Motivations for This Study • Methods • Results: Wind + Impulsive Mass Loss • Results: pre-SN Stripped Structures Conclusions 7 / 27

  8. Radiatively Driven Winds in One Slide ∆ p = h c ( ν i cos ( θ i ) − ν f cos ( θ f )) Problems: High Non-Linearity and Clumpiness: = � ρ 2 � def � ρ � 2 � = 1 ⇒ Inhomogeneities ⇒ ˙ M � = 4 π r 2 ρ v ( r ) f cl 8 / 27

  9. Radiatively Driven Winds in One Slide Risk: ∆ p = h Possible Overestimation of the c ( ν i cos ( θ i ) − ν f cos ( θ f )) Wind Mass Loss Rate Problems: High Non-Linearity and Clumpiness: = � ρ 2 � def � ρ � 2 � = 1 ⇒ Inhomogeneities ⇒ ˙ M � = 4 π r 2 ρ v ( r ) f cl 8 / 27

  10. Mass Loss in (Semi–)Empirical parametric models. Uncertainties encapsulated in efficiency factor: ˙ M ( L , T eff , Z , R , M , ... ) ⇐ η ˙ M ( L , T eff , Z , R , M , ... ) η is a free parameter: η ∈ [ 0, + ∞ ) Figure: From Smith 2014, ARA&A, 52, 487S 9 / 27

  11. Different dM / dt algorithms with Grid of Z ⊙ ≃ 0.019 , non-rotating stellar models: • Initial mass: M ZAMS = { 15, 20, 25, 30 } M ⊙ ; • Efficiency: f cl = { 1, 1 1 � η ≡ 10 } ; 3 , • Different combinations of wind mass loss rates for “hot” ( T eff ≥ 15 [ kK ] ), “cool” ( T eff < 15 [ kK ] ) and WR stars: Kudritzki et al. ’89; Vink et al. ’00, ’01; Van Loon et al. ’05; Nieuwenhuijzen et al. ’90; De Jager et al. ’88; Nugis & Lamers ’00; Hamann et al. ’98. 10 / 27

  12. Results: Relative Final Mass 1.0 VdJNL VdJNL VNJNL VNJNL 0.9 VNJH VNJH 0.8 VdJH VdJH M O depl / M ZAMS VvLH VvLH 0.7 VvLNL VvLNL KdJNL KdJNL 0.6 KNJNL KNJNL KNJH KNJH 0.5 KdJH KdJH 0.4 KvLH KvLH KvLNL KvLNL 0.3 15 20 25 30 M ZAMS [ M ⊙ ] Diamonds ⇔ η = 1.0 , Squares ⇔ η = 0.33 , Circles ⇔ η = 0.1 . 11 / 27

  13. M ( t ) for M ZAMS = 15 M ⊙ with 15 14 13 12 Vink et al. , de Jager et al. Kudritzki et al. , Nieuwenhuijzen et al. 11 M [ M ⊙ ] Kudritzki et al. , de Jager et al. 10 Vink et al. , Nieuwenhuijzen et al. 9 Kudritzki et al. , van Loon et al. Vink et al. , van Loon et al. TAMS 8 η = 1.0 7 η = 0.33 M ZAMS = 15 M ⊙ η = 0.1 6 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 t [Myr] ;

  14. M ( t ) for M ZAMS = 15 M ⊙ with 15 14 Only η = 1.0 13 12 Vink et al. , de Jager et al. Kudritzki et al. , Nieuwenhuijzen et al. 11 M [ M ⊙ ] Kudritzki et al. , de Jager et al. 10 Vink et al. , Nieuwenhuijzen et al. 9 Kudritzki et al. , van Loon et al. Vink et al. , van Loon et al. TAMS 8 η = 1.0 7 η = 0.33 M ZAMS = 15 M ⊙ η = 0.1 6 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 t [Myr] ; 12 / 27

  15. Comparison of Hot Wind Algorithms Example: M ZAMS = 15 M ⊙ evolutionary tracks 5.2 5.2 Kudritzki et al. , de Jager et al. Vink et al. , de Jager et al. 5.1 5.1 5.0 5.0 4.9 4.9 4.8 4.8 log ( L / L ⊙ ) log ( L / L ⊙ ) 4.7 4.7 4.6 4.6 4.5 4.5 η = 1.0 η = 1.0 4.4 4.4 η = 0.33 η = 0.33 4.3 4.3 η = 0.1 η = 0.1 4.2 4.2 4.6 4.4 4.2 4.0 3.8 3.6 3.4 4.6 4.4 4.2 4.0 3.8 3.6 3.4 log ( T eff / [ K ]) log ( T eff / [ K ]) ⇒ Early (“hot”) wind influences subsequent evolution 13 / 27

  16. Why Blue Loops? 1/2 • Blue loop ⇔ Large He-core • Convection mixes H down, determining M He • µ is higher in He-rich regions 2 15 M ⊙ , Vink et al. , T eff = 15000 K 0 0.6 − 2 − 4 0.4 0.2 η = 1.0 − 6 log 10 ( ρ / [ g cm − 3 ]) η = 0.1 − 8 0.0 η = 0.33 4.3 4.4 4.5 4.6 4.7 4.8 − 10 2 15 M ⊙ , Kudritzki et al. , T eff = 15000 K 0 − 2 0.6 0.4 − 4 0.2 η = 1.0 − 6 η = 0.1 0.0 − 8 η = 0.33 4.3 4.4 4.5 4.6 4.7 4.8 − 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 M [ M ⊙ ] 14 / 27

  17. Why Blue Loops? 2/2 • Blue loop starts when H-burning shell reaches the edge of the He core • Lower µ and higher X ⇒ Variations of ε nuc • Envelope responds on its thermal timescale ⇐ • if η < 1 ⇒ He core edge too deep for Blue Loops • Vink et al. rate yields larger cores allowing for Blue Loops 15 / 27

  18. Why not Blue Loops? 2 de Jager et al. Hot wind: Vink et al. , η = 1.0 van Loon et al. 0 Nieuwenhuijzen et al. log 10 ( ρ [ g cm − 1 ]) − 2 M ZAMS = 15 M ⊙ age ≃ 13.3 [Myr] − 4 − 6 ε nuc ≥ 10 4 [ erg g − 1 s − 1 ] − 8 5 6 7 8 9 10 11 12 13 14 M [ M ⊙ ] ; Density profiles at the onset of Blue Loops

  19. Why not Blue Loops? 2 de Jager et al. Hot wind: Vink et al. , η = 1.0 van Loon et al. 0 Nieuwenhuijzen et al. log 10 ( ρ [ g cm − 1 ]) − 2 M ZAMS = 15 M ⊙ 0 age ≃ 13.3 [Myr] − 4 − 6 ε nuc ≥ 10 4 [ erg g − 1 s − 1 ] − 8 5 6 7 8 9 10 11 12 13 14 M [ M ⊙ ] ; ρ Ideal gas EOS: P gas = µ m p k b T 16 / 27

  20. Summary Results of the Comparison of Wind Algorithms: • η has a larger influence on the final mass than the wind algorithm; • Early (“hot phase”) mass loss influences the further evolution; ˙ M is more uncertain when it is higher (RSG phase); • • Different algorithmic representations of stellar winds ⇒ Qualitatively different evolutionary tracks; • Small number (8) of WR stars, none with η < 1 ⇒ Other mass loss mechanism(s) to form WR? 17 / 27

  21. Outline Introduction • Importance of Massive Stars • How do they lose mass? Stellar Winds • Outline of the Theory • Methods • Results: Amplitude of the Uncertainty • Results: Blue Loops in 15 M ⊙ models Impulsive Mass Loss Events • Motivations for This Study • Methods • Results: Wind + Impulsive Mass Loss • Results: pre-SN Stripped Structures Conclusions 18 / 27

  22. Why Impulsive Mass Loss? Observational Evidence: • LBVs • Progenitors of H-poor core collapse SNe ( ∼ 30% ) • Dense CSM for Type IIn SNe Theory: Dynamical Events ⇒ not ready • Pulsational Instabilities • Roche Lobe Overflow in binaries • Catastrophic Eruption(s) ∆ M wind ≪ ∆ M impulsive (?) 19 / 27

  23. The Stripping Process 5.2 unstripped 5.1 M = 15 M ⊙ , Z = Z ⊙ 5.0 Remove mass in steps of 1 M ⊙ , MCE 4.9 max { ∆ M impulsive } = 7 M ⊙ . log 10 ( L / L ⊙ ) 4.8 4.7 4.6 mSGB 4.5 4.4 4.3 hMR 4.2 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 log 10 ( T eff / [ K ]) Red dot : T eff = 10 4 [ K ] ; Yellow Triangle : R ≥ R max /2 = 375 R ⊙ ; Cyan Diamond : Maximum Extent Convective Envelope. 20 / 27

  24. Chosen Stripping Points 5.2 unstripped 5.1 M = 15 M ⊙ , Z = Z ⊙ 5.0 MCE 4.9 log 10 ( L / L ⊙ ) 4.8 4.7 4.6 mSGB 4.5 4.4 4.3 hMR 4.2 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 log 10 ( T eff / [ K ]) t ( MCE ) − t ( mSGB ) ≃ 10 4 [ yr ] ≪ 14.13 × 10 6 [ yr ] 21 / 27

  25. Stripped series on the HR diagram Evolutionary tracks depend only on ∆ M impulsive 5.2 5.0 MCE log 10 ( L / L ⊙ ) 4.8 4.6 4.4 mSGB hMR 4.2 4.4 4.2 4.0 3.8 3.6 4.4 4.2 4.0 3.8 3.6 4.4 4.2 4.0 3.8 3.6 log 10 ( T eff / [ K ]) 22 / 27

  26. Evolution toward Higher T eff 5.2 E unstripped G 5.1 MCE 7 M ⊙ F 5.0 MCE 7 M ⊙ , η = 0 D A 4.9 log 10 ( L / L ⊙ ) 4.8 C 4.7 B 4.6 4.5 4.4 3.75 3.70 3.65 3.60 3.55 log 10 ( T eff / [ K ]) Impulsive + wind mass loss drives blueward evolution 23 / 27

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend