synchrosqueezed curvelet transforms for 2d mode
play

Synchrosqueezed Curvelet Transforms for 2D mode decomposition - PowerPoint PPT Presentation

Synchrosqueezed Curvelet Transforms for 2D mode decomposition Haizhao Yang Department of Mathematics, Stanford University Collaborators: Lexing Ying and Jianfeng Lu Department of Mathematics and ICME, Stanford University


  1. Synchrosqueezed Curvelet Transforms for 2D mode decomposition Haizhao Yang Department of Mathematics, Stanford University Collaborators: Lexing Ying † and Jianfeng Lu ♯ † Department of Mathematics and ICME, Stanford University ♯ Department of Mathematics, Duke University SIAM Conference on Imaging Science, May 2014

  2. Geophysics ◮ A superposition of several wave-like components. ◮ Wave field separation and ground roll removal problems. 1 0.8 0.6 0.4 0.2 0 −0.2 −0.4 −0.6 0.4 0.5 0.3 0.4 0.2 0.3 0.1 0.2 0 0.1 −0.1 0 −0.2 −0.1 −0.3 −0.2 −0.4 −0.3

  3. Materials science Atomic crystal analysis ◮ Observation: an assemblage of wave-like components; ◮ Goal: Crystal segmentations, crystal rotations, crystal defects, crystal deformations. Figure : Left: An atomic crystal image. Middle: Estimated crystal rotation. Right: Identified crystal defects. Takes about 10s for a 1024*1024 image, while other methods using GPU computing take at least 40s.

  4. 1D mode decomposition Known: A superposition of wave-like components � K � K α k ( t ) e 2 π iN k φ k ( t ) . f ( t ) = f k ( t ) = k =1 k =1 Unknown: Number K , components f k ( t ), smooth instantaneous amplitudes α k ( t ), smooth instantaneous frequencies N k φ ′ k ( t ). Existing methods: ◮ Empirical mode decomposition methods (Huang et al. 98, 09); ◮ Synchrosqueezed wavelet transform (Daubechies et al. 09, 11); Synchrosqueezed wave packet transform (Y. 13); ◮ Data-driven time-frequency analysis (Hou et al. 11, 12, 13); ◮ Regularized nonstationary autoregression (Fomel 13);

  5. 1D synchrosqueezed wavelet transform (SSWT) Continuous wavelet transform of a signal s ( t ): � s ( t ) a − 1 / 2 φ ( t − b W s ( a , b ) = � s ( t ) , φ ab ( t ) � = ) d t . a EX: s ( t ) = A cos( ω t ). � 1 φ ( a ξ ) e ib ξ d ξ = A s ( ξ ) a 1 / 2 � 4 π a 1 / 2 � φ ( a ω ) e ib ω . W s ( a , b ) = � 2 π Synchrosqueezing for better readability Figure : Numerical examples by Daubechies et al, signal f ( t ) = sin (8 t ).

  6. Definitions of SSWT EX: s ( t ) = A cos( ω t ). 4 π a 1 / 2 � φ ( a ω ) e ib ω ⇒ ∂ b W s ( a , b ) A W s ( a , b ) = iW s ( a , b ) = ω Definition: Instantaneous frequency estimate ω s ( a , b ) = ∂ b W s ( a , b ) iW s ( a , b ) . Definition: Synchrosqueezed wavelet transform � W s ( a , b ) a − 3 / 2 δ ( ω s ( a , b ) − ω ) d a . T s ( ω, b ) = { a : W s ( a , b ) � =0 }

  7. Theory of SSWT Theorem: (Daubechies, Lu, Wu 11 ACHA) If � K � K α k ( t ) e 2 π iN k φ k ( t ) f ( t ) = f k ( t ) = k =1 k =1 and f k ( t ) are well-separated, then ◮ T f ( a , b ) has well-separated supports Z k concentrating ( N k φ ′ k ( b ) , b ); ◮ f k ( t ) can be accurately recovered by applying an inverse transform on I Z k ( a , b ) T f ( a , b ). where I Z k ( a , b ) is an indication function.

  8. 2D mode decomposition Known: A superposition of wave-like components K K � � α k ( x ) e 2 π iN k φ k ( x ) . f ( x ) = f k ( x ) = k =1 k =1 Unknown: Number K , components f k ( x ), local amplitudes α k ( x ), local wave vectors N k ∇ φ k ( x ). Existing methods: 1. 2D EMD methods (Huang et al.); 2. 2D Empirical wavelet, curvelet transforms (Gilles, Tran, Osher 13); 3. 2D SS wave packet and curvelet transforms (Y. and Ying 13, 14).

  9. 2D wavelet transform or wave packet transform? Consider two plane waves e ip · x and e iq · x again. 10 10 10 8 8 8 6 6 6 4 4 4 2 2 2 ξ 2 0 ξ 2 0 ξ 2 0 −2 −2 −2 −4 −4 −4 −6 −6 −6 −8 −8 −8 −10 −10 −10 −10 −5 0 5 10 −10 −5 0 5 10 −10 −5 0 5 10 ξ 1 ξ 1 ξ 1 ◮ Left: Supports of continuous wavelets and plane waves with different wave numbers in the Fourier domain. Radial separation. ◮ Middle: Supports of wavelets and plane waves with the same wave number. No angular separation. ◮ Right: Supports of wave packets and plane waves with the same wave number. Angular separation.

  10. Definition: Wave Packets Given the mother wave packet w ( x ) and s ∈ (1 / 2 , 1), the family of wave packets { w pb ( x ) , p , b ∈ R 2 } is defined as w pb ( x ) = | p | s w ( | p | s ( x − b )) e 2 π i ( x − b ) · p , or equivalently in Fourier domain w pb ( ξ ) = | p | − s e − 2 π ib · ξ ˆ w ( | p | − s ( ξ − p )) . � Definition: The 2D wave packet transform of a function f ( x ) is a function of p , b ∈ R 2 � W f ( p , b ) = w pb ( x ) f ( x ) d x .

  11. Definition: The local wavevector estimation of a function f ( x ) at ( p , b ) is v f ( p , b ) = ∇ b W f ( p , b ) 2 π iW f ( p , b ) for p , b ∈ R 2 such that W f ( p , b ) � = 0. Definition: Given f ( x ), for v , b ∈ R 2 , W f ( p , b ), and v f ( p , b ), the synchrosqueezed energy distribution T f ( v , b ) is � | W f ( p , b ) | 2 δ ( v f ( p , b ) − v ) d p . T f ( v , b ) = { p : W f ( p , b ) � =0 } Remark: The support of T f ( v , b ) is concentrating around local wavevectors.

  12. Sketch of 2D mode decomposition Two components: f ( x ) = α 1 ( x ) e 2 π iN φ 1 ( x ) + α 2 ( x ) e 2 π iN φ 2 ( x ) . 200 200 200 200 100 100 100 100 p 2 0 v 2 0 v 2 0 v 2 0 −100 −100 −100 −100 −200 −200 −200 −200 200 200 200 200 100 1 100 1 100 1 100 1 0 0 0 0 −100 0.5 −100 0.5 −100 0.5 −100 0.5 −200 −200 −200 −200 p 1 0 v 1 0 v 1 0 v 1 0 b 2 b 2 b 2 b 2 Fast algorithms for forward and inverse transforms. O ( L 2 log L ) for a L × L image.

  13. Theory of 2D SS wave packet transform (SSWPT) Theorem [Y.,Ying 13, SIAM Imaging Science] For a well-separated superposition f ( x ) = � K k =1 α k ( x ) e 2 π iN φ k ( x ) and ǫ > 0, we define R f ,ǫ = { ( p , b ) : | W f ( p , b ) | ≥ | p | − s √ ǫ } and Z f , k = { ( p , b ) : | p − N ∇ φ k ( b ) | ≤ | p | s } for 1 ≤ k ≤ K . There exists a constant ǫ 0 ( K ) > 0 such that for any ǫ ∈ (0 , ǫ 0 ) there exists a constant N 0 ( K , ǫ ) > 0 such that for any N > N 0 ( K , ǫ ) the following statements hold. (i) { Z f , k : 1 ≤ k ≤ K } are disjoint and R f ,ǫ ⊂ � 1 ≤ k ≤ K Z f , k ; (ii) For any ( p , b ) ∈ R f ,ǫ ∩ Z f , k , � √ ǫ. | v f ( p , b ) − N ∇ φ k ( b ) | | N ∇ φ k ( b ) |

  14. Banded wave-like components 1 1 12 0.9 0.8 0.9 10 0.8 0.6 0.8 0.7 0.4 0.7 8 0.2 0.6 0.6 x 2 0.5 0 x 2 0.5 6 0.4 −0.2 0.4 4 0.3 −0.4 0.3 0.2 −0.6 0.2 2 0.1 −0.8 0.1 0 −1 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 x 1 x 1 1 1 0.07 0.6 0.9 0.9 0.06 0.8 0.8 0.5 0.7 0.7 0.05 0.4 0.6 0.6 0.04 x 2 0.5 x 2 0.5 0.3 0.03 0.4 0.4 0.2 0.3 0.3 0.02 0.2 0.2 0.1 0.01 0.1 0.1 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 x 1 x 1 Figure : Top-left: A banded deformed plane wave. Top-right: Number of wave packet coefficients | W f ( a , b ) | > δ . Bottom-left: Relative error of local wave-vector estimates using SSWPT. Bottom-right: Relative error of local wave-vector estimates using SSCT.

  15. General curvelet transform: Some notations 1. The scaling matrix � a t � 0 A a = . a s 0 2. The rotation angle θ and rotation matrix � cos θ � − sin θ R θ = . sin θ cos θ 3. The unit vector e θ = (cos θ, sin θ ) T of rotation angle θ . 4. θ α represents the argument of given vector α . Definition: 2D general curvelets For 1 2 < s < t < 1, define t + s 2 e 2 π ia ( x − b ) · e θ w ( A a R − 1 w a θ b ( x ) = a θ ( x − b )) . A family of curvelets { w a θ b ( x ) , a ∈ [1 , ∞ ) , θ ∈ [0 , 2 π ) , b ∈ R 2 } .

  16. Definition: 2D general curvelet transform � W f ( a , θ, b ) = R 2 w a θ b ( x ) f ( x ) d x for a ∈ [1 , ∞ ), θ ∈ [0 , 2 π ), b ∈ R 2 . Definition: local wave vector estimation Local wave-vector estimation at ( a , θ, b ) is v f ( a , θ, b ) = ∇ b W f ( a , θ, b ) 2 π iW f ( a , θ, b ) for a ∈ [1 , ∞ ), θ ∈ [0 , 2 π ), b ∈ R 2 such that W f ( a , θ, b ) � = 0. Definition: synchrosqueezed energy distribution Synchrosqueezed energy distribution T f ( v , b ) is � | W f ( a , θ, b ) | 2 δ ( ℜ v f ( a , θ, b ) − v ) a d a d θ T f ( v , b ) = { ( a ,θ ): W f ( a ,θ, b ) � =0 } for v ∈ R 2 , b ∈ R 2 .

  17. Theory of the SS curvelet transform (SSCT) Theorem [Y., Ying SIAM Mathematical Analysis 14] Suppose 1 2 < s < η < t are fixed, and a well-separated superposition � K e − ( φ k ( x ) − c k ) 2 /σ 2 k α k ( x ) e 2 π iN φ k ( x ) , f ( x ) = k =1 where σ k ≥ N − η . For any ǫ > 0, define � � 2 √ ǫ ( a , θ, b ) : | W f ( a , θ, b ) | ≥ a − s + t R f ,ǫ = and � � a R − 1 ( a , θ, b ) : | A − 1 Z f , k = θ ( a · e θ − N ∇ φ k ( b )) | ≤ 1 for 1 ≤ k ≤ K . For any ǫ , there exists N 0 ( ǫ ) > 0 such that for any N > N 0 ( ǫ ) the following statements hold. (i) { Z f , k : 1 ≤ k ≤ K } are disjoint and R f ,ǫ ⊂ � 1 ≤ k ≤ K Z f , k ; (ii) For any ( a , θ, b ) ∈ R f ,ǫ ∩ Z f , k , � √ ǫ. | v f ( a , θ, b ) − N ∇ φ k ( b ) | | N ∇ φ k ( b ) |

  18. Applications in Geophysics Noisy Example 1 for SS curvelet transform 1 0.5 0 −0.5 −1 0.6 0.4 0.5 0.3 0.4 0.2 0.3 0.1 0.2 0 0.1 −0.1 0 −0.2 −0.1 −0.3 −0.2 −0.4 −0.3 Figure : Top: A noisy superposition of two components. Left: First recovered component. Right: Second recovered component.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend