symmetric polynomials and modules over affine sl 2 at
play

Symmetric polynomials and modules over affine sl ( 2 ) at admissible - PowerPoint PPT Presentation

Symmetric polynomials and modules over affine sl ( 2 ) at admissible levels Simon Wood The Australian National University Joint work with David Ridout Conference on Lie algebras, vertex operator algebras, and related topics A conference in


  1. Symmetric polynomials and modules over affine sl ( 2 ) at admissible levels Simon Wood The Australian National University Joint work with David Ridout Conference on Lie algebras, vertex operator algebras, and related topics A conference in honor of J. Lepowsky and R. Wilson (Simon Wood, ANU) Sym polys and admissible levels Lie algebras and VOAs 1 / 13

  2. Affine vertex operator algebras g = g ⊗ C [ t , t − 1 ] ⊕ C K . Let g be a simple Lie algebra with affinisation � Then, for k � = − h ∨ , � � V k ( g ) = Ind � � � g g ⊗ C [ t ] ⊕ C K C k , C k = k · id , g ⊗ C [ t ] C k = 0 , K is a universal affine vertex operator algebra . For certain levels k , there exist proper ideals. V k ( g ) L k ( g ) = � max ideal � . Idea and goal Determine module theory of L k ( g ) from that of V k ( g ) . (Simon Wood, ANU) Sym polys and admissible levels Lie algebras and VOAs 2 / 13

  3. Example g = sl ( 2 ) = span { E , H , F } For g = sl ( 2 ) , there exists a (unique) proper ideal I if and only if k + 2 = u u ≥ 2 , v ≥ 1 , gcd ( u , v ) = 1 , v , L k ( sl ( 2 )) = V k ( sl ( 2 )) . I Such levels are called admissible. The ideal is generated by a singular vector χ of sl ( 2 ) -weight 2 ( u − 1 ) and conformal weight ( u − 1 ) v . Integral levels For v = 1 , χ = ( E − 1 ) u − 1 1 u − 2 . (Simon Wood, ANU) Sym polys and admissible levels Lie algebras and VOAs 3 / 13

  4. The Zhu algebra Moral “definition”: Zhu algebra of vertex operator algebra V A ( V ) ≃ { 0-modes of V acting on vectors annihilated by pos. modes. } There is a 1-1 correspondence between simple N -gradable modules over a vertex operator algebra V and simple modules over the Zhu algebra A ( V ) . A ( V ) -module M Top grade N -grading V -module M (Simon Wood, ANU) Sym polys and admissible levels Lie algebras and VOAs 4 / 13

  5. Classification strategy Let π : V ։ A ( V ) . Theorem [Frenkel,Zhu] For V k ( g ) , Zhu’s algebra is A ( V k ( g )) ≃ U ( g ) . For any ideal I ⊂ V k ( g ) , the image π ( I ) is an ideal of A ( V k ( g )) and � � V k ( g ) = A ( V k ( g )) A I π ( I ) For χ ∈ V k ( g ) singular, such that � χ � = I ⇒ � π ( χ ) � = π ( I ) . Classifying N -gradable weight L k ( g ) -modules A V k ( g ) -module M is a L k ( g ) -module. ⇐ ⇒ I annihilates M . 1 - 1 → simple U ( g ) Simple N -gradable L k ( g ) -modules ← π ( I ) -weight modules. U ( g ) -weight modules ⇒ U ( g ) π ( I ) -weight modules ⇒ N -gradable L k ( g ) -modules. (Simon Wood, ANU) Sym polys and admissible levels Lie algebras and VOAs 5 / 13

  6. Example g = sl ( 2 ) = span { E , F , H } Theorem [Gabriel] Any simple sl ( 2 ) weight module with finite dimensional weight spaces is isomorphic to one of the following: Finite-dimensional modules F λ , λ ∈ Z ≥ 0 . Highest and lowest weight. Weights: λ , λ − 2 ,..., 2 − λ , − λ Infinite-dimensional highest weight modules H λ , λ ∈ C \ Z ≥ 0 . Weights: λ , λ − 2 , λ − 4 ,... Infinite-dimensional lowest weight modules L λ , λ ∈ C \ Z ≤ 0 . Weights: ..., λ + 4 , λ + 2 , λ Infinite-dimensional weight modules W λ ; ∆ , λ , ∆ ∈ C and 2 ∆ � = µ ( µ + 2 ) for any µ ∈ λ + 2 Z , where ∆ is the eigenvalue of the quadratic Casimir and W λ ; ∆ ∼ = W λ + 2; ∆ . Neither highest nor lowest weight. Weights: ..., 2 + λ , λ , λ − 2 ,... All weight spaces are 1 dimensional. (Simon Wood, ANU) Sym polys and admissible levels Lie algebras and VOAs 6 / 13

  7. Example g = sl ( 2 ) = span { E , F , H } For k ∈ Z ≥ 0 , the ideal of V k ( sl ( 2 )) is generated by the singular vector χ = ( E − 1 ) k + 1 1 k . In A ( V k ( sl ( 2 ))) ≃ U ( sl ( 2 )) , we have π (( E − 1 ) k + 1 1 k ) = E k + 1 . � � V k ( sl ( 2 )) ≃ U ( sl ( 2 )) The generator E is nilpotent in A � E k + 1 � . � E k + 1 1 k � The simple N -gradable U ( sl ( 2 )) � E k + 1 � -weight modules are the simple V k ( sl ( 2 )) -weight modules with top grade F λ , λ = 0 ,..., k . Upshot Easy if the singular vector is easy, very hard if not. (Simon Wood, ANU) Sym polys and admissible levels Lie algebras and VOAs 7 / 13

  8. General admissible levels Let ∆ r , s = r 2 − 1 + s 2 u 2 k + 2 = u λ r , s = r − 1 − su v 2 − rsu v , v , v . 2 2 Theorem [Adamovi´ c, Milas] [Ridout,SW] Any simple N -gradable L k ( sl ( 2 )) -module is isomorphic to one of the following: The simple quotients induced from the finite-dimensional modules F r − 1 , where 1 ≤ r ≤ u − 1 . The simple quotients induced from the infinite-dimensional highest weight modules H λ r , s , where 1 ≤ r ≤ u − 1 and 1 ≤ s ≤ v − 1 . The simple quotients induced from the infinite-dimensional lowest weight modules L − λ r , s , where 1 ≤ r ≤ u − 1 and 1 ≤ s ≤ v − 1 . The simple quotients induced from the infinite-dimensional weight modules W λ , ∆ r , s , where 1 ≤ r ≤ u − 1 and 1 ≤ s ≤ v − 1 , 2 ∆ r , s � = µ ( µ + 2 ) for all µ ∈ λ + 2 Z and W λ , ∆ r , s ∼ = W λ , ∆ u − r , v − s . (Simon Wood, ANU) Sym polys and admissible levels Lie algebras and VOAs 8 / 13

  9. Proof idea: Wakimoto free field realisation V k ( sl ( 2 )) is a vertex operator subalgebra of { rank 1 Heisenberg }⊗{ βγ -ghosts } . 1 1 a ( z ) a ( w ) ∼ γ ( z ) β ( w ) ∼ β ( z ) β ( w ) ∼ 0 ∼ γ ( z ) γ ( w ) . ( z − w ) 2 , z − w , E ( z ) = β ( z ) , √ H ( z ) = 2 : β ( z ) γ ( z ) : + 2 k + 4 a ( z ) , √ F ( z ) = : β ( z ) γ ( z ) γ ( z ) : + 2 k + 4: a ( z ) γ ( z ) : + k ∂γ ( z ) . Screening operator � � � 2 S ( z ) = : β ( z ) exp − k + 2 φ ( z ) ∂φ ( z ) = a ( z ) . : , (Simon Wood, ANU) Sym polys and admissible levels Lie algebras and VOAs 9 / 13

  10. Proof idea: Wakimoto free field realisation The singular vector of V u v − 2 ( sl ( 2 )) , in the free field realisation, can be realised by the screening operator. � S [ u − 1 ] | q � = S ( z 1 ) ··· S ( z u − 1 ) | q � d z � = β ( z 1 ) ··· β ( z u − 1 ) � � � � � � � v u u − 1 p m z a − m | q � d z 1 ··· d z u − 1 1 − z i 2 v z − v − 1 ∏ ∏ ∏ × − exp i , z 1 ··· z u − 1 z j u m 1 ≤ i � = j ≤ u − 1 i = 1 m ≥ 1 where � u − 1 � � 2 v ∑ z m q = ( u − 1 ) = p m z i . u , i = 1 (Simon Wood, ANU) Sym polys and admissible levels Lie algebras and VOAs 10 / 13

  11. Proof idea: Wakimoto free field realisation The singular vector of V u v − 2 ( sl ( 2 )) , in the free field realisation, can be realised by the screening operator. � S [ u − 1 ] | q � = S ( z 1 ) ··· S ( z u − 1 ) | q � d z � = β ( z 1 ) ··· β ( z u − 1 ) � � � � � � � v u − 1 p m z a − m | q � d z 1 ··· d z u − 1 1 − z i u 2 v z − v − 1 ∏ ∏ ∏ × − exp i , z 1 ··· z u − 1 z j u m 1 ≤ i � = j ≤ u − 1 i = 1 m ≥ 1 � �� � Inner prod. of Jack symm. poly. (Simon Wood, ANU) Sym polys and admissible levels Lie algebras and VOAs 10 / 13

  12. Proof idea: Wakimoto free field realisation The singular vector of V u v − 2 ( sl ( 2 )) , in the free field realisation, can be realised by the screening operator. � S [ u − 1 ] | q � = S ( z 1 ) ··· S ( z u − 1 ) | q � d z � = β ( z 1 ) ··· β ( z u − 1 ) � � � � � � � v u u − 1 p m z a − m | q � d z 1 ··· d z u − 1 1 − z i 2 v z − v − 1 ∏ ∏ ∏ × − exp i , z 1 ··· z u − 1 z j u m 1 ≤ i � = j ≤ u − 1 i = 1 m ≥ 1 � �� � Jack poly. (Simon Wood, ANU) Sym polys and admissible levels Lie algebras and VOAs 10 / 13

  13. Proof idea: Wakimoto free field realisation The singular vector of V u v − 2 ( sl ( 2 )) , in the free field realisation, can be realised by the screening operator. � S [ u − 1 ] | q � = S ( z 1 ) ··· S ( z u − 1 ) | q � d z � = β ( z 1 ) ··· β ( z u − 1 ) � � � � � � � v u u − 1 p m 1 − z i 2 v z a − m | q � d z 1 ··· d z u − 1 z − v − 1 ∏ ∏ ∏ × − exp i z 1 ··· z u − 1 , z j u m 1 ≤ i � = j ≤ u − 1 i = 1 m ≥ 1 � �� � easy expansion in Jack poly. (Simon Wood, ANU) Sym polys and admissible levels Lie algebras and VOAs 10 / 13

  14. Proof idea: The generator of the ideal Choose a generator of sl ( 2 ) -weight 0. S [ u − 1 ] | q � = const · S [ u − 1 ] γ u − 1 χ = F u − 1 | q � 0 0 Compute eigenvalue of zero-mode χ 0 on a general top grade vector to determine image in A ( V u v − 2 ( sl ( 2 ))) . χ 0 | p , τ � = f ( p , τ ) | p , τ � , p = Heisenberg weight , τ = βγ -weight . Theorem [Ridout, SW] The polynomial f ( p , τ ) , in free field data, is also a polynomial in 1 sl ( 2 ) -data. f ( λ , ∆ ) = g u ( λ , ∆ ) ∏ ( ∆ − ∆ r , s ) , 2 r , s g u + 2 ( λ , ∆ ) = ( 2 u + 1 ) λ ( u + 1 ) 2 g u + 1 ( λ , ∆ ) − 2 ∆ − ( u − 1 )( u + 1 ) g u ( λ , ∆ ) ( u + 1 ) 2 g 1 ( λ , ∆ ) = 1 , g 2 ( λ , ∆ ) = λ . (Simon Wood, ANU) Sym polys and admissible levels Lie algebras and VOAs 11 / 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend