symmetric indefinite triangular factorization revealing
play

Symmetric Indefinite Triangular Factorization Revealing the Rank - PowerPoint PPT Presentation

Symmetric Indefinite Triangular Factorization Revealing the Rank Profile Matrix Jean-Guillaume Dumas, Cl ement Pernet Universit e Grenoble Alpes, Laboratoire Jean Kuntzmann, UMR CNRS ISSAC18, New York, USA July 17, 2017 Supported by


  1. Symmetric Indefinite Triangular Factorization Revealing the Rank Profile Matrix Jean-Guillaume Dumas, Cl´ ement Pernet Universit´ e Grenoble Alpes, Laboratoire Jean Kuntzmann, UMR CNRS ISSAC’18, New York, USA July 17, 2017 Supported by OpenDreamKit Horizon 2020 European RI project (#676541) P · L · ∆ · LT · PT J-G. Dumas, C. Pernet (UGA) ISSAC’18, New York 1 / 16

  2. Introduction Context Applications of symmetric Gaussian elimination Symmetric linear system solving Signature LLL: R factor of rational QR [Villard’12]) P · L · ∆ · LT · PT J-G. Dumas, C. Pernet (UGA) ISSAC’18, New York 2 / 16

  3. Introduction Context Applications of symmetric Gaussian elimination Symmetric linear system solving Signature LLL: R factor of rational QR [Villard’12]) Compared to unsymmetric Gaussian elimination Save a factor of 2 in time complexity Invariants specific to symmetric matrices (signature) P · L · ∆ · LT · PT J-G. Dumas, C. Pernet (UGA) ISSAC’18, New York 2 / 16

  4. Introduction Context Applications of symmetric Gaussian elimination Symmetric linear system solving Signature LLL: R factor of rational QR [Villard’12]) Compared to unsymmetric Gaussian elimination Save a factor of 2 in time complexity Invariants specific to symmetric matrices (signature) Motivation here fsytrf : finite field dense symmetric elimination in fflas-ffpack to be lifted for LinBox signature over Z reduction to matrix product: O ( n 2 r ω − 2 ) and BLAS3 investigate symmetric rank profile matrix and related pivoting P · L · ∆ · LT · PT J-G. Dumas, C. Pernet (UGA) ISSAC’18, New York 2 / 16

  5. Introduction Outline State of the art on symmetric factorizations 1 Rank profile and pivoting 2 Algorithms 3 The characteristic 2 case 4 Performance 5 P · L · ∆ · LT · PT J-G. Dumas, C. Pernet (UGA) ISSAC’18, New York 3 / 16

  6. State of the art on symmetric factorizations Symmetric factorizations Symmetric Decomposition Exists for Field with sqrt & B T = A B Generic rank profile P · L · ∆ · LT · PT J-G. Dumas, C. Pernet (UGA) ISSAC’18, New York 4 / 16

  7. State of the art on symmetric factorizations Symmetric factorizations Symmetric Decomposition Exists for Field with sqrt & B T = A B Generic rank profile L T Generic rank profile D A = L P · L · ∆ · LT · PT J-G. Dumas, C. Pernet (UGA) ISSAC’18, New York 4 / 16

  8. State of the art on symmetric factorizations Symmetric factorizations Symmetric Decomposition Exists for Field with sqrt & B T = A B Generic rank profile L T Generic rank profile D A = L L T No [ 0 1 1 0 ]-like blocks T P D P A = L P · L · ∆ · LT · PT J-G. Dumas, C. Pernet (UGA) ISSAC’18, New York 4 / 16

  9. State of the art on symmetric factorizations Symmetric factorizations Symmetric Decomposition Exists for Field with sqrt & B T = A B Generic rank profile L T Generic rank profile D A = L L T No [ 0 1 1 0 ]-like blocks T P D P A = L Any [Parlett-Reid 1970] L T T P T P = A L T tridiagonal P · L · ∆ · LT · PT J-G. Dumas, C. Pernet (UGA) ISSAC’18, New York 4 / 16

  10. State of the art on symmetric factorizations Symmetric factorizations Symmetric Decomposition Exists for Field with sqrt & B T = A B Generic rank profile L T Generic rank profile D A = L L T No [ 0 1 1 0 ]-like blocks T P D P A = L Any [Parlett-Reid 1970] L T T P T P = A L T tridiagonal . . . Any [Bunch-Kaufmann 1977] L T T P Y P A = L Y with 1 × 1 and 2 × 2 blocks P · L · ∆ · LT · PT J-G. Dumas, C. Pernet (UGA) ISSAC’18, New York 4 / 16

  11. State of the art on symmetric factorizations State of the art Form Properties [Parlett-Reid 1970] [Bunch-Parlett 1971] [Aasen 1971] Diagonal Pivoting Full pivoting Partial pivoting T Iterative Iterative Iterative 2 3 n 3 2 3 n 3 1 3 n 3 P · L · ∆ · LT · PT J-G. Dumas, C. Pernet (UGA) ISSAC’18, New York 5 / 16

  12. State of the art on symmetric factorizations State of the art Form Properties [Parlett-Reid 1970] [Bunch-Parlett 1971] [Aasen 1971] Diagonal Pivoting Full pivoting Partial pivoting T Iterative Iterative Iterative 3 n 3 2 2 3 n 3 1 3 n 3 [Bunch-Kaufmann 1977] Partial pivoting Y Iterative 1 3 n 3 P · L · ∆ · LT · PT J-G. Dumas, C. Pernet (UGA) ISSAC’18, New York 5 / 16

  13. State of the art on symmetric factorizations State of the art Form Properties [Parlett-Reid 1970] [Bunch-Parlett 1971] [Aasen 1971] Diagonal Pivoting Full pivoting Partial pivoting T Iterative Iterative Iterative 2 3 n 3 3 n 3 2 1 3 n 3 [Bunch-Kaufmann 1977] [Shklarski-Toledo 2011] Partial pivoting Partial pivoting Y Iterative Recursive (GRP hyp.) 1 3 n 3 1 3 n 3 P · L · ∆ · LT · PT J-G. Dumas, C. Pernet (UGA) ISSAC’18, New York 5 / 16

  14. State of the art on symmetric factorizations State of the art Form Properties [Parlett-Reid 1970] [Bunch-Parlett 1971] [Aasen 1971] Diagonal Pivoting Full pivoting Partial pivoting T Iterative Iterative Iterative 2 3 n 3 2 3 n 3 1 3 n 3 [Bunch-Kaufmann 1977] [Shklarski-Toledo 2011] [Yamazaki-Dongarra 2017] Partial pivoting Partial pivoting Partial pivoting Y Iterative Recursive (GRP hyp.) Block Iterative 1 3 n 3 1 3 n 3 1 3 n 3 P · L · ∆ · LT · PT J-G. Dumas, C. Pernet (UGA) ISSAC’18, New York 5 / 16

  15. State of the art on symmetric factorizations State of the art Form Properties [Parlett-Reid 1970] [Bunch-Parlett 1971] [Aasen 1971] Diagonal Pivoting Full pivoting Partial pivoting T Iterative Iterative Iterative 2 3 n 3 2 3 n 3 1 3 n 3 [Bunch-Kaufmann 1977] [Shklarski-Toledo 2011] [Yamazaki-Dongarra 2017] Partial pivoting Partial pivoting Partial pivoting Y Iterative Recursive (GRP hyp.) Block Iterative 1 3 n 3 1 3 n 3 1 3 n 3 Here Pivoting revealing the rank profile matrix ∆ Recursive for any matrix 3 n 3 when rank = n & ω =3) O ( n 2 r ω − 2 ) (gives 1 P · L · ∆ · LT · PT J-G. Dumas, C. Pernet (UGA) ISSAC’18, New York 5 / 16

  16. Rank profile and pivoting Symmetric pivoting Diagonal pivoting P · L · ∆ · LT · PT J-G. Dumas, C. Pernet (UGA) ISSAC’18, New York 6 / 16

  17. Rank profile and pivoting Symmetric pivoting Diagonal pivoting P · L · ∆ · LT · PT J-G. Dumas, C. Pernet (UGA) ISSAC’18, New York 6 / 16

  18. Rank profile and pivoting Symmetric pivoting Diagonal pivoting ⇒ LDL T with D diagonal P · L · ∆ · LT · PT J-G. Dumas, C. Pernet (UGA) ISSAC’18, New York 6 / 16

  19. Rank profile and pivoting Symmetric pivoting Diagonal pivoting ⇒ LDL T with D diagonal Off-diagonal pivoting with zero diagonal 0 0 0 0 0 0 P · L · ∆ · LT · PT J-G. Dumas, C. Pernet (UGA) ISSAC’18, New York 6 / 16

  20. Rank profile and pivoting Symmetric pivoting Diagonal pivoting ⇒ LDL T with D diagonal Off-diagonal pivoting with zero diagonal 0 0 0 0 0 0 P · L · ∆ · LT · PT J-G. Dumas, C. Pernet (UGA) ISSAC’18, New York 6 / 16

  21. Rank profile and pivoting Symmetric pivoting Diagonal pivoting ⇒ LDL T with D diagonal Off-diagonal pivoting with zero diagonal ⇒ L ∆ L T with ∆ block diagonal, 1 × 1 0 or 2 × 2 [ 0 1 1 0 ] blocks 0 0 0 0 0 P · L · ∆ · LT · PT J-G. Dumas, C. Pernet (UGA) ISSAC’18, New York 6 / 16

  22. Rank profile and pivoting Symmetric pivoting Diagonal pivoting ⇒ LDL T with D diagonal Off-diagonal pivoting with zero diagonal ⇒ L ∆ L T with ∆ block diagonal, 1 × 1 0 or 2 × 2 [ 0 1 1 0 ] blocks 0 Off-diagonal pivoting with non-zero 0 diagonal 0 0 P · L · ∆ · LT · PT J-G. Dumas, C. Pernet (UGA) ISSAC’18, New York 6 / 16

  23. Rank profile and pivoting Symmetric pivoting Diagonal pivoting ⇒ LDL T with D diagonal Off-diagonal pivoting with zero diagonal ⇒ L ∆ L T with ∆ block diagonal, 1 × 1 or 2 × 2 [ 0 1 1 0 ] blocks Off-diagonal pivoting with non-zero 0 diagonal 0 0 0 P · L · ∆ · LT · PT J-G. Dumas, C. Pernet (UGA) ISSAC’18, New York 6 / 16

  24. Rank profile and pivoting Symmetric pivoting Diagonal pivoting ⇒ LDL T with D diagonal Off-diagonal pivoting with zero diagonal ⇒ L ∆ L T with ∆ block diagonal, 1 × 1 or 2 × 2 [ 0 1 1 0 ] blocks Off-diagonal pivoting with non-zero 0 diagonal 0 ⇒ LDL T with D diagonal 0 ⇒ requires division by 2 0 P · L · ∆ · LT · PT J-G. Dumas, C. Pernet (UGA) ISSAC’18, New York 6 / 16

  25. Rank profile and pivoting The rank profile matrix Rank Profiles Given a matrix A of rank r : Example   0 0 0 2 3 0 4 0   A =   0 0 0 0   5 0 0 0 P · L · ∆ · LT · PT J-G. Dumas, C. Pernet (UGA) ISSAC’18, New York 7 / 16

  26. Rank profile and pivoting The rank profile matrix Rank Profiles Given a matrix A of rank r : RRP (Row Rank Profile): first r linearly independant rows Example   0 0 0 2 3 0 4 0   A =   0 0 0 0   5 0 0 0 P · L · ∆ · LT · PT J-G. Dumas, C. Pernet (UGA) ISSAC’18, New York 7 / 16

  27. Rank profile and pivoting The rank profile matrix Rank Profiles Given a matrix A of rank r : RRP (Row Rank Profile): first r linearly independant rows CRP (Column Rank Profile): first r linearly independant columns Example   0 0 0 2 3 0 4 0   A =   0 0 0 0   5 0 0 0 P · L · ∆ · LT · PT J-G. Dumas, C. Pernet (UGA) ISSAC’18, New York 7 / 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend