surface parameterization
play

Surface Parameterization Christian Rssl INRIA Sophia-Antipolis - PowerPoint PPT Presentation

Surface Parameterization Christian Rssl INRIA Sophia-Antipolis Outline Motivation Objectives and Discrete Mappings Angle Preservation Discrete Harmonic Maps Discrete Conformal Maps Angle Based Flattening Reducing


  1. Surface Parameterization Christian Rössl INRIA Sophia-Antipolis

  2. Outline • Motivation • Objectives and Discrete Mappings • Angle Preservation • Discrete Harmonic Maps • Discrete Conformal Maps • Angle Based Flattening • Reducing Area Distortion • Alternative Domains 237 Christian Rössl, INRIA

  3. Surface Parameterization [www.wikipedia.de] 238 Christian Rössl, INRIA

  4. Surface Parameterization [www.wikipedia.de] 239 Christian Rössl, INRIA

  5. Surface Parameterization 240 Christian Rössl, INRIA

  6. Motivation • Texture mapping Lévy, Petitjean, Ray, and Maillot: Least squares conformal maps for automatic texture atlas generation , SIGGRAPH 2002 241 Christian Rössl, INRIA

  7. Motivation • Many operations are simpler on planar domain Lévy: Dual Domain Exrapolation , SIGGRAPH 2003 242 Christian Rössl, INRIA

  8. Motivation • Exploit regular structure in domain Gu, Gortler, Hoppe: Geometry Images , SIGGRAPH 2002 243 Christian Rössl, INRIA

  9. Surface Parameterization 244 Christian Rössl, INRIA

  10. Surface Parameterization f X U Jacobian 245 Christian Rössl, INRIA

  11. Surface Parameterization f X U d X = J d U 246 Christian Rössl, INRIA

  12. Surface Parameterization f X U d X = J d U || d X || 2 = d U J T J d U First Fundamental Form { 247 Christian Rössl, INRIA

  13. Characterization of Mappings • By first fundamental form I – Eigenvalues λ 1,2 of I – Singular values σ 1,2 of J ( σ i2 = λ i ) • Isometric – I = Id , λ 1 = λ 2 = 1 • Conformal angle preserving – I = µ Id , λ 1 / λ 2 = 1 • Equiareal area preserving – det I = 1, λ 1 λ 2 = 1 248 Christian Rössl, INRIA

  14. Piecewise Linear Maps • Mapping = 2D mesh with same connectivity f X U 249 Christian Rössl, INRIA

  15. Objectives • Isometric maps are rare • Minimize distortion w.r.t. a certain measure – Validity (bijective map) triangle flip – Boundary fixed / free? – Domain e.g.,spherical – Numerical solution linear / non-linear? 250 Christian Rössl, INRIA

  16. Discrete Harmonic Maps • f is harmonic if • Solve Laplace equation u and v are harmonic Dirichlet boundary conditions • In 3D: "fix planar boundary and smooth" 251 Christian Rössl, INRIA

  17. Discrete Harmonic Maps • f is harmonic if • Solve Laplace equation • Yields linear system (again) • Convex combination maps – Normalization – Positivity 252 Christian Rössl, INRIA

  18. Convex Combination Maps • Every (interior) planar vertex is a convex combination of its neighbors • Guarantees validity if boundary is mapped to a convex polygon (e.g., rectangle, circle) • Weights – Uniform (barycentric mapping) – Shape preserving [Floater 1997] Reproduction of planar meshes – Mean Value Coordinates [Floater 2003] • Use mean value property of harmonic functions 253 Christian Rössl, INRIA

  19. Conformal Maps • Planar conformal mappings satisfy the Cauchy-Riemann conditions and 254 Christian Rössl, INRIA

  20. Conformal Maps • Planar conformal mappings satisfy the Cauchy-Riemann conditions and • Differentiating once more by x and y yields ⇒ and and similar • conformal ⇒ harmonic 255 Christian Rössl, INRIA

  21. Discrete Conformal Maps • Planar conformal mappings satisfy the Cauchy-Riemann conditions and • In general, there are no conformal mappings for piecewise linear functions! 256 Christian Rössl, INRIA

  22. Discrete Conformal Maps • Planar conformal mappings satisfy the Cauchy-Riemann conditions and • Conformal energy (per triangle T ) • Minimize → 257 Christian Rössl, INRIA

  23. Discrete Conformal Maps • Least-squares conformal maps [Lévy et al. 2002] → where • Satisfy Cauchy-Riemann conditions in least-squares sense • Leads to solution of linear system • Alternative formulation leads to same solution… 258 Christian Rössl, INRIA

  24. Discrete Conformal Maps • Same solution is obtained for cotangent weights Neumann boundary conditions + fixed vertices [Desbrun et al. 2002] Discrete Conformal Maps 259 Christian Rössl, INRIA

  25. Discrete Conformal Maps 260 Christian Rössl, INRIA

  26. Discrete Conformal Maps • Free boundary depends on choice of fixed vertices (>1) ABF 261 Christian Rössl, INRIA

  27. Angle Based Flattening [Sheffer&de Sturler 2000] • Perserve angles  specify problem in angles – Constraints ensure validity • triangle • Internal vertex • Wheel consistency – Objective function preserve angles 2D ~3D "optimal" angles (uniform scaling) 262 Christian Rössl, INRIA

  28. Angle Based Flattening • Free boundary • Validity: no local self-intersections • Non-linear optimization 263 Christian Rössl, INRIA

  29. Angle Based Flattening • Free boundary • Non-linear optimization – Newton iteration – Solve linear system in every step [Zayer et al. 2005] 264 Christian Rössl, INRIA

  30. And how about area distortion? 265 Christian Rössl, INRIA

  31. Reducing Area Distortion • Energy minimization based on – MIPS [Hormann & Greiner 2000] – modification [Degener et al. 2003] – "Stretch" [Sander et al. 2001] or – modification [Sorkine et al. 2002] 266 Christian Rössl, INRIA

  32. Non-Linear Methods • Free boundary • Direct control over distortion • No convergence guarantees • May get stuck in local minima • May not be suitable for large problems • May need feasible point as initial guess • May require hierarchical optimization even for moderately sized data sets 267 Christian Rössl, INRIA

  33. Linear Methods • Efficient solution of a sparse linear system • Guaranteed convergence • Fixed convex boundary • May suffer from area distortion for complex meshes • An alternative approach to reducing area distortion… – How accurately can we reproduce a surface on the plane? – How do we characterize the mapping? 268 Christian Rössl, INRIA

  34. Reducing Area Distortion isometry 269 Christian Rössl, INRIA

  35. Reducing Area Distortion • Quasi-harmonic maps [Zayer et al. 2005] estimate from f • Iterate (few iterations) – Determine tensor C from f – Solve for g 270 Christian Rössl, INRIA

  36. Examples 271 Christian Rössl, INRIA

  37. Examples → Stretch metric minimization Using [Yoshizawa et. al 2004] 272 Christian Rössl, INRIA

  38. Reducing Area Distortion • Introduce cuts  area distortion vs. continuity • Often cuts are unavoidable (e.g., open sphere) Treatment of boundary is important! 273 Christian Rössl, INRIA

  39. Reducing Area Distortion • Solve Poisson system [Zayer et al. 2005] * estimate from previous map * Similar setting used in mesh editing 274 Christian Rössl, INRIA

  40. Spherical Parameterization • Sphere is natural domain for genus-0 surfaces • Additional constraint • Naïve approach – Laplacian smoothing and back-projection – Obtain minimum for degenerate configuration 275 Christian Rössl, INRIA

  41. Spherical Parameterization • (Tangential) Laplacian Smoothing and back-projection – Minimum energy is obtained for degenerate solution • Theoretical guarantees are expensive – [Gotsman et al. 2003] • A compromise?! – Stereographic projection – Smoothing in curvilinear coordinates 276 Christian Rössl, INRIA

  42. Arbitrary Topology • Piecewise linear domains – Base mesh obtained by mesh decimation – Piecewise maps – Smoothness 277 Christian Rössl, INRIA

  43. Literature • Floater & Hormann: Surface parameterization: a tutorial and survey, Springer, 2005 • Lévy, Petitjean, Ray, and Maillot: Least squares conformal maps for automatic texture atlas generation , SIGGRAPH 2002 • Desbrun, Meyer, and Alliez: Intrinsic parameterizations of surface meshes , Eurographics 2002 • Sheffer & de Sturler: Parameterization of faceted surfaces for meshing using angle based flattening , Engineering with Computers, 2000. 278 Christian Rössl, INRIA

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend