support constrained generator matrices of gabidulin codes
play

Support Constrained Generator Matrices of Gabidulin Codes in - PowerPoint PPT Presentation

Support Constrained Generator Matrices of Gabidulin Codes in Characteristic Zero Hikmet Yildiz , Netanel Raviv , Babak Hassibi California Institute of Technology, Pasadena CA Washington University in Saint Louis, St. Louis MO


  1. Support Constrained Generator Matrices of Gabidulin Codes in Characteristic Zero Hikmet Yildiz ∗ , Netanel Raviv † , Babak Hassibi ∗ ∗ California Institute of Technology, Pasadena CA † Washington University in Saint Louis, St. Louis MO ISIT, Los Angeles CA June 2020 Yildiz-Raviv-Hassibi Support Constrained Generator Matrices of Gabidulin Codes in Characteristic Zero ISIT ’20 1 / 17

  2. Outline • Introduction and Motivation • Preliminaries • Field extensions • Rank–metric codes • Problem Definition and Results • Related problems on support constrained generator matrices • Known results on Reed–Solomon codes and Gabidulin codes in finite fields • Our case: Gabidulin codes in characteristic zero • Conclusion Yildiz-Raviv-Hassibi Support Constrained Generator Matrices of Gabidulin Codes in Characteristic Zero ISIT ’20 2 / 17

  3. Introduction and Motivation • Rank–metric codes have applications in • network coding 1 , • space–time codes 2 , • cryptography 3 , • low rank matrix recovery 4 • Gabidulin codes 5 (over finite fields) are the rank–metric analog of Reed–Solomon codes • Recently, they were extended 6 to fields of characteristic zero via field automorphisms. • Independently, support constrained Reed–Solomon codes 7 and Gabidulin codes 8 are studied lately due to their applications in distributed computing. • We intend to extend these results on Gabidulin codes to the fields of characteristic zero 1 Silva et al. TIT’08 2 Lusina et al. TIT’03 3 Gabidulin et al. ’91 4 M¨ uelich et al. ’17 5 Delsarte ’78, Gabidulin ’85 6 Augot et al. ’18 7 Dau et al. ISIT’14, Halbawi et al. ISIT’14, Yildiz et al. TIT’18, Lovett FOCS’18 8 Yildiz et al. TIT’19 Yildiz-Raviv-Hassibi Support Constrained Generator Matrices of Gabidulin Codes in Characteristic Zero ISIT ’20 3 / 17

  4. Field extensions • A field extension E of a field F (E / F) is a field such that F ⊂ E and F inherits the operations from E. • E is a vector space over F. → ( x 1 , . . . , x m ) ∈ F m x ∈ E − • An automorphism θ : E → E of E / F: θ ( x ) = x ∀ x ∈ F θ ( x + y ) = θ ( x ) + θ ( y ) ∀ x, y ∈ E θ ( xy ) = θ ( x ) θ ( y ) ∀ x, y ∈ E • Cyclic extension: all automorphisms are θ 0 , θ 1 , θ 2 , . . . , θ m − 1 Examples • C / R , θ ( x ) = x, θ ( x ) = x ∗ dim = 2 θ ( x ) = x q i , • F q m / F q , dim = m i = 0 , 1 , . . . , m − 1 • Q ( e 2 π/N ) / Q , dim = ϕ ( N ) Yildiz-Raviv-Hassibi Support Constrained Generator Matrices of Gabidulin Codes in Characteristic Zero ISIT ’20 4 / 17

  5. Rank–metric codes Let E / F and m = dim F E. Let C ⊂ E n be a k –dimensional linear subspace. Codewords are in E n or F m × n considering c as a vector in E n d H = min 0 � = c ∈C wt( c ) considering c as a matrix in F m × n d R = min 0 � = c ∈C rank( c ) Singleton Bound d R ≤ d H ≤ n − k + 1 d H = n − k + 1 = ⇒ MDS (maximum distance separable), e.g. Reed–Solomon codes d R = n − k + 1 = ⇒ MRD (maximum rank distance), e.g. Gabidulin codes MRD codes are MDS! Yildiz-Raviv-Hassibi Support Constrained Generator Matrices of Gabidulin Codes in Characteristic Zero ISIT ’20 5 / 17

  6. Problem Definition C = rowsp G k × n   × × · · · → Z 1 0 0 × · · · × → Z 2 0 0     G k × n = . . . . .  . . . .  . . . . . .   × × 0 · · · 0 → Z k Z i : Set of zero locations in the i th row. Objective Given Z 1 , . . . , Z k ⊂ { 1 , 2 , . . . , n } , • Complete G such that it is an MDS code (GM–MDS conjecture) 9 • Complete G such that it is an MRD code. • Over finite fields 10 • Over fields of characteristic zero 9 Yildiz et al. TIT’18, Lovett FOCS’18 10 Yildiz et al. TIT’19 Yildiz-Raviv-Hassibi Support Constrained Generator Matrices of Gabidulin Codes in Characteristic Zero ISIT ’20 6 / 17

  7. Necessary Condition   × 0 × · · · 0 → Z 1 0 0 × · · · × → Z 2     G k × n = . . . . .   . . . . . . . . . .   → Z k × × 0 · · · 0 Z i : Set of zero locations in the i th row. MDS condition [Dau et al. ISIT’14] For every nonempty Ω ⊂ { 1 , 2 , . . . , k } , � � � � � Z i � ≤ k − | Ω | � � � � � i ∈ Ω i.e. : Not too many zeros: |Z i | ≤ k − 1 (each row has at most k − 1 zeros) |Z i ∩ Z j | ≤ k − 2 , i � = j (each pair of rows has at most k − 2 common zeros) . . . |Z 1 ∩ · · · ∩ Z k | = 0 (there is no all zero column) Yildiz-Raviv-Hassibi Support Constrained Generator Matrices of Gabidulin Codes in Characteristic Zero ISIT ’20 7 / 17

  8. Reed–Solomon and Gabidulin codes Reed–Solomon codes (MDS) Gabidulin codes (MRD)     θ 0 ( α 1 ) θ 0 ( α 2 ) θ 0 ( α n ) 1 1 · · · 1 · · · · · · θ 1 ( α 1 ) θ 1 ( α 2 ) θ 1 ( α n ) α 1 α 2 α n · · ·         α 2 α 2 α 2 · · · θ 2 ( α 1 ) θ 2 ( α 2 ) θ 2 ( α n ) · · ·     1 2 n     . . . . . .  . . .   . . .  . . . . . .     α k − 1 α k − 1 α k − 1 θ k − 1 ( α 1 ) θ k − 1 ( α 2 ) θ k − 1 ( α n ) · · · · · · 1 2 n α 1 , . . . , α n ∈ F are distinct α 1 , . . . , α n ∈ E are linearly independent over F θ ( x ) = x q ) (For finite fields F q m / F q , • n × n extensions of the matrices above must be full rank. • We can multiply them by any k × k invertible transformation matrix from left. Yildiz-Raviv-Hassibi Support Constrained Generator Matrices of Gabidulin Codes in Characteristic Zero ISIT ’20 8 / 17

  9. Finding a transformation matrix Find a matrix T for a given matrix A such that G = T · A satisfies the given zero pattern.     × × · · · · · · 0 0 a 11 a 12 a 1 n × · · · × · · · 0 0 a 21 a 22 a 2 n         G =  = T k × k · . . . . . . .  . . . .   . . .  . . . . . . .    × × 0 · · · 0 a k 1 a k 2 · · · a kn Assuming |Z i | = k − 1 , T i, : · A : , Z i = G i, Z i = 0 ���� � �� � 1 × k k × ( k − 1) T i,j = ( − 1) j +1 det A − j, Z i i.e. T can be constructed from the ( k − 1) × ( k − 1) minors of A . Yildiz-Raviv-Hassibi Support Constrained Generator Matrices of Gabidulin Codes in Characteristic Zero ISIT ’20 9 / 17

  10. Question For the following values of A , do there exist α i ’s such that • n × n extension of A is full rank • T is full rank, where T = [( − 1) j +1 det A − j, Z i ] i,j =1 ,...,k (i) Reed–Solomon codes (ii) Gabidulin codes     · · · θ 0 ( α 1 ) θ 0 ( α 2 ) θ 0 ( α n ) 1 1 1 · · · θ 1 ( α 1 ) θ 1 ( α 2 ) θ 1 ( α n ) · · · α 1 α 2 α n · · ·         α 2 α 2 α 2 θ 2 ( α 1 ) θ 2 ( α 2 ) θ 2 ( α n ) · · · A (i) = , A (ii) = · · ·     1 2 n     . . . . . .  . . .   . . .  . . . . . .     α k − 1 α k − 1 α k − 1 θ k − 1 ( α 1 ) θ k − 1 ( α 2 ) θ k − 1 ( α n ) · · · · · · 1 2 n Yildiz-Raviv-Hassibi Support Constrained Generator Matrices of Gabidulin Codes in Characteristic Zero ISIT ’20 10 / 17

  11. Question For the following values of X , do there exist α i ’s such that P ( X ) = det X · det T = det X · det[( − 1) j +1 det X [ k ] − j, Z i ] i,j ∈ [ k ] � = 0 (ii) Gabidulin codes (i) Reed–Solomon codes     θ 0 ( α 1 ) θ 0 ( α 2 ) θ 0 ( α n ) 1 1 · · · 1 · · · θ 1 ( α 1 ) θ 1 ( α 2 ) θ 1 ( α n ) α 1 α 2 · · · α n · · ·         α 2 α 2 α 2 θ 2 ( α 1 ) θ 2 ( α 2 ) θ 2 ( α n ) X (i) = · · · , X (ii) = · · ·     1 2 n     . . . . . .  . . .    . . . . . . . . .     α n − 1 α n − 1 α n − 1 θ n − 1 ( α 1 ) θ n − 1 ( α 2 ) θ n − 1 ( α n ) · · · · · · 1 2 n P ( X ) is a multivariate polynomial in n 2 variables defined by the zero pattern (i.e. the subsets Z 1 , . . . , Z k ) Yildiz-Raviv-Hassibi Support Constrained Generator Matrices of Gabidulin Codes in Characteristic Zero ISIT ’20 11 / 17

  12. Known results • The answer is ‘Yes’ for Reed–Solomon codes iff the MDS condition holds, i.e. GM–MDS Conjecture [Yildiz et al. TIT’18, Lovett FOCS’18] There exists α 1 , . . . , α n such that   1 1 · · · 1 α 1 α 2 · · · α n     α 2 α 2 α 2 · · ·   P � = 0 1 2 n   . . .   . . . . . .   α n − 1 α n − 1 α n − 1 · · · 1 2 n if and only if � � � � � Z i � ≤ k − | Ω | ∀∅ � = Ω ⊂ [ k ] � � � i ∈ Ω • The answer is the same for Gabidulin codes over finite fields. [Yildiz et al. TIT’19] Yildiz-Raviv-Hassibi Support Constrained Generator Matrices of Gabidulin Codes in Characteristic Zero ISIT ’20 12 / 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend