supa
play

SUPA University of St Andrews 600 YEARS RETUNE, Heidelberg, June - PowerPoint PPT Presentation

Condensation, superfluidity and lasing of coupled light-matter systems. Jonathan Keeling SUPA University of St Andrews 600 YEARS RETUNE, Heidelberg, June 2012 Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012


  1. Stability of Thomas-Fermi solution − ∇ 2 2 m + m ω 2 � γ eff − κ − Γ | ψ | 2 �� r 2 + U | ψ | 2 + i � i ∂ t ψ = ψ 2 30 Density 25 Unstable growth 20 15 10 5 3 γ net 0 2 Γ 0 2 4 6 8 Radius Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 9 / 22

  2. Stability of Thomas-Fermi solution − ∇ 2 2 m + m ω 2 � γ eff − κ − Γ | ψ | 2 �� r 2 + U | ψ | 2 + i � i ∂ t ψ = ψ 2 30 Density 25 Unstable growth 20 15 10 5 3 γ net 0 2 Γ 0 2 4 6 8 Radius High m modes: δρ n , m ≃ e im θ r m . . . 1 2 ∂ t ρ + ∇· ( ρ v ) = ( γ net − Γ ρ ) ρ Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 9 / 22

  3. Stability of Thomas-Fermi solution − ∇ 2 2 m + m ω 2 � γ eff − κ − Γ | ψ | 2 �� r 2 + U | ψ | 2 + i � i ∂ t ψ = ψ 2 30 Density 25 Stabilised 20 15 10 5 3 γ net 0 2 Γ 0 2 4 6 8 Radius High m modes: δρ n , m ≃ e im θ r m . . . 1 2 ∂ t ρ + ∇· ( ρ v ) = ( γ net Θ( r 0 − r ) − Γ ρ ) ρ Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 9 / 22

  4. Stability of Thomas-Fermi solution − ∇ 2 2 m + m ω 2 � γ eff − κ − Γ | ψ | 2 �� r 2 + U | ψ | 2 + i � i ∂ t ψ = ψ 2 30 Density 25 ???? 20 15 10 5 3 γ net 0 2 Γ 0 2 4 6 8 Radius High m modes: δρ n , m ≃ e im θ r m . . . 1 2 ∂ t ρ + ∇· ( ρ v ) = ( γ net Θ( r 0 − r ) − Γ ρ ) ρ Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 9 / 22

  5. Time evolution: t=0 t=2 t=22 t=30 t=35 t=40 t=45 t=56 [Keeling & Berloff PRL ’08] Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 10 / 22

  6. Time evolution: t=0 t=2 t=22 t=30 t=35 t=40 t=45 t=56 i ∂ t ψ = ( µ − 2 Ω L z ) ψ Ω = ω , cancels trap. Why? [Keeling & Berloff PRL ’08] Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 10 / 22

  7. Observability of vortex lattices Not seen experimentally (yet?) Observation: Fast rotation Stability: Disorder, ellipticity Relaxation, thermalisation? [Borgh et al. PRB ’12 in press] Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 11 / 22

  8. Observability of vortex lattices Not seen experimentally (yet?) Observation: Fast rotation 30 25 20 Spectrum: ω 15 10 5 0 −5 0 5 k x Stability: Disorder, ellipticity Relaxation, thermalisation? [Borgh et al. PRB ’12 in press] Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 11 / 22

  9. Observability of vortex lattices Not seen experimentally (yet?) Observation: Fast rotation 30 25 20 Spectrum: ω Interference: 15 10 5 0 −5 0 5 k x Stability: Disorder, ellipticity Relaxation, thermalisation? [Borgh et al. PRB ’12 in press] Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 11 / 22

  10. Observability of vortex lattices Not seen experimentally (yet?) Observation: Fast rotation 30 25 20 Spectrum: ω Interference: 15 10 5 0 −5 0 5 k x Stability: Disorder, ellipticity Relaxation, thermalisation? [Borgh et al. PRB ’12 in press] Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 11 / 22

  11. Observability of vortex lattices Not seen experimentally (yet?) Observation: Fast rotation 30 25 20 Spectrum: ω Interference: 15 10 5 0 −5 0 5 k x Stability: Disorder, ellipticity Relaxation, thermalisation? [Borgh et al. PRB ’12 in press] Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 11 / 22

  12. Superfluidity Introduction to polariton condensation 1 Approaches to modelling Pattern formation 2 Non-equilibrium pattern formation Spontaneous vortex lattices Superfluidity 3 Non-equilibrium condensate spectrum Experiments and aspects of superfluidity Current-current response function Coherence 4 Experiments Power law decay of coherence Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 12 / 22

  13. Fluctuations above transition When condensed Sound mode � − 1 � = ω 2 − ξ 2 frequency D R ( ω, k ) Det k momentum With ξ k ≃ ck Poles: ω ∗ = ξ k Generic structure of Green’s function: � ω + i γ net − ǫ k − µ � i γ net − µ [ D R ] − 1 = − i γ net − µ − ω − i γ net − ǫ k − µ Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 13 / 22

  14. Fluctuations above transition When condensed Real Imaginary � − 1 � frequency D R ( ω, k ) = ( ω + i γ net ) 2 + γ 2 net − ξ 2 Det k momentum With ξ k ≃ ck Poles: � ω ∗ = − i γ net ± ξ 2 k − γ 2 net Generic structure of Green’s function: � ω + i γ net − ǫ k − µ � i γ net − µ [ D R ] − 1 = − i γ net − µ − ω − i γ net − ǫ k − µ Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 13 / 22

  15. Fluctuations above transition When condensed Real Imaginary � − 1 � frequency D R ( ω, k ) = ( ω + i γ net ) 2 + γ 2 net − ξ 2 Det k momentum With ξ k ≃ ck Poles: � ω ∗ = − i γ net ± ξ 2 k − γ 2 net Generic structure of Green’s function: � ω + i γ net − ǫ k − µ � i γ net − µ [ D R ] − 1 = − i γ net − µ − ω − i γ net − ǫ k − µ Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 13 / 22

  16. Aspects of superfluidity Quantised Landau Metastable Two-fluid Local Solitary vortices critical persistent hydrody- thermal waves velocity flow namics equilib- rium ✧ ✧ ✧ ✧ ✧ ✧ Superfluid 4 He/cold atom Bose-Einstein condensate ✧ ✪ ✪ ✧ ✧ ✪ Non-interacting Bose-Einstein condensate ✪ ✧ ✪ ✧ ✧ ✧ Classical irrotational fluid ✧ ✪ ✪ ? ? ? Incoherently pumped polariton condensates Lagoudakis et al. Nat. Phys. ’08. Utsunomiya et al. Nat. Phys. ’08. Amo et al. Nature ’09; Nat. Phys. ’09 Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 14 / 22

  17. Aspects of superfluidity Quantised Landau Metastable Two-fluid Local Solitary vortices critical persistent hydrody- thermal waves velocity flow namics equilib- rium ✧ ✧ ✧ ✧ ✧ ✧ Superfluid 4 He/cold atom Bose-Einstein condensate ✧ ✪ ✪ ✧ ✧ ✪ Non-interacting Bose-Einstein condensate ✪ ✧ ✪ ✧ ✧ ✧ Classical irrotational fluid ✧ ✪ ✪ ? ? ? Incoherently pumped polariton condensates Lagoudakis et al. Nat. Phys. ’08. Utsunomiya et al. Nat. Phys. ’08. Amo et al. Nature ’09; Nat. Phys. ’09 Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 14 / 22

  18. ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ������ ������ ������ ������ Superfluid density Two-fluid hydrodynamics Experimentally, rotation: 1 ρ / ρ total ρ normal ρ superfluid To calculate, 0 transverse/longitudinal: 0 1 T/T c ρ s , ρ n distinguished by slow rotation Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 15 / 22

  19. ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ������ ������ ������ ������ Superfluid density Two-fluid hydrodynamics Experimentally, rotation: 1 ρ / ρ total ρ normal ρ superfluid To calculate, 0 transverse/longitudinal: 0 1 T/T c ρ s , ρ n distinguished by slow rotation Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 15 / 22

  20. Superfluid density Two-fluid hydrodynamics Experimentally, rotation: 1 ρ / ρ total ρ normal ρ superfluid To calculate, 0 transverse/longitudinal: 0 1 ����������� ����������� ����������� ����������� T/T c ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ������ ������ ρ s , ρ n distinguished by slow ������ ������ rotation Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 15 / 22

  21. ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ������ ������ ������ ������ Superfluid density Currrent: J = ρ v = ψ † i ∇ ψ = | ψ | 2 ∇ φ 2 k i + q i J i ( q ) = ψ † ψ k k + q 2 m Response function: � H → H − f ( q ) · J i ( q ) J i ( q ) = χ ij ( q ) f j ( q ) q Vertex corrections essential for superfluid part. Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 16 / 22

  22. ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ������ ������ ������ ������ Superfluid density Currrent: J = ρ v = ψ † i ∇ ψ = | ψ | 2 ∇ φ 2 k i + q i J i ( q ) = ψ † ψ k k + q 2 m Response function: � H → H − f ( q ) · J i ( q ) J i ( q ) = χ ij ( q ) f j ( q ) q Vertex corrections essential for superfluid part. Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 16 / 22

  23. Superfluid density ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� Currrent: ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ������ ������ ������ ������ J = ρ v = ψ † i ∇ ψ = | ψ | 2 ∇ φ 2 k i + q i J i ( q ) = ψ † ψ k k + q 2 m Response function: � H → H − f ( q ) · J i ( q ) J i ( q ) = χ ij ( q ) f j ( q ) q χ ij ( ω = 0 , q → 0 ) = � [ J i ( q ) , J j ( − q )] � = ρ S q i q j q 2 + ρ N m δ ij m Vertex corrections essential for superfluid part. Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 16 / 22

  24. Superfluid density ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� Currrent: ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ������ ������ ������ ������ J = ρ v = ψ † i ∇ ψ = | ψ | 2 ∇ φ 2 k i + q i J i ( q ) = ψ † ψ k k + q 2 m Response function: � H → H − f ( q ) · J i ( q ) J i ( q ) = χ ij ( q ) f j ( q ) q χ ij ( ω = 0 , q → 0 ) = � [ J i ( q ) , J j ( − q )] � = ρ S q i q j q 2 + ρ N m δ ij m Vertex corrections essential for superfluid part. Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 16 / 22

  25. Non-equilibrium superfluid response Superfluid response exists because: � i ψ 0 q j = i ψ 0 q i � 1 2 m ( 1 , − 1 ) D R ( q , ω = 0 ) − 1 2 m D R ( ω = 0 ) ∝ 1 /ǫ q despite pumping/decay — superfluid response exists. Normal density: � d ω � � σ z D K σ z ( D R + D A ) � d d k ǫ k ρ N = 2 π Tr Is affected by pump/decay: Does not vanish at T → 0. [JK PRL ’11] Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 17 / 22

  26. Non-equilibrium superfluid response Superfluid response exists because: � i ψ 0 q j = i ψ 0 q i � 1 2 m ( 1 , − 1 ) D R ( q , ω = 0 ) − 1 2 m D R ( ω = 0 ) ∝ 1 /ǫ q despite pumping/decay — superfluid response exists. Normal density: � d ω � � σ z D K σ z ( D R + D A ) � d d k ǫ k ρ N = 2 π Tr Is affected by pump/decay: Does not vanish at T → 0. [JK PRL ’11] Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 17 / 22

  27. Non-equilibrium superfluid response Superfluid response exists because: � i ψ 0 q j = i ψ 0 q i � 1 2 m ( 1 , − 1 ) D R ( q , ω = 0 ) − 1 2 m D R ( ω = 0 ) ∝ 1 /ǫ q despite pumping/decay — superfluid response exists. Normal density: � d ω � � σ z D K σ z ( D R + D A ) � d d k ǫ k ρ N = 2 π Tr Is affected by pump/decay: Does not vanish at T → 0. [JK PRL ’11] Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 17 / 22

  28. Non-equilibrium superfluid response Superfluid response exists because: � i ψ 0 q j = i ψ 0 q i � 1 2 m ( 1 , − 1 ) D R ( q , ω = 0 ) − 1 2 m D R ( ω = 0 ) ∝ 1 /ǫ q despite pumping/decay — superfluid response exists. Normal density: � d ω � � σ z D K σ z ( D R + D A ) � d d k ǫ k ρ N = 2 π Tr Is affected by pump/decay: 3 γ net / µ = 0.0 Does not vanish at T → 0. γ net / µ = 0.1 γ net / µ = 0.5 2 ρ N / m µ 1 0 0 1 2 3 4 5 T/ µ [JK PRL ’11] Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 17 / 22

  29. Coherence: Introduction to polariton condensation 1 Approaches to modelling Pattern formation 2 Non-equilibrium pattern formation Spontaneous vortex lattices 3 Superfluidity Non-equilibrium condensate spectrum Experiments and aspects of superfluidity Current-current response function Coherence 4 Experiments Power law decay of coherence Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 18 / 22

  30. Correlations in a 2D Gas = Correlations: + � � g 1 ( r , r ′ , t ) = ψ † ( r , t ) ψ ( r ′ , 0 ) D < = D K − D R + D A Generally, get: � � � ln ( r / r 0 ) t ≃ 0 � � ≃ | ψ 0 | 2 exp ψ † ( r , t ) ψ ( 0 , 0 ) − a p 2 ln ( c 2 t /γ net r 2 1 0 ) r ≃ 0 [Szyma´ nska et al. PRL ’06; PRB ’07] [Wouters and Savona PRB ’09] Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 19 / 22

  31. Correlations in a 2D Gas = Correlations: (in 2D) + � � g 1 ( r , r ′ , t ) = ψ † ( r , t ) ψ ( r ′ , 0 ) ≃ | ψ 0 | 2 exp � � − D < φφ ( r , r ′ , t ) D < = D K − D R + D A Generally, get: � � � ln ( r / r 0 ) t ≃ 0 � � ≃ | ψ 0 | 2 exp ψ † ( r , t ) ψ ( 0 , 0 ) − a p 1 2 ln ( c 2 t /γ net r 2 0 ) r ≃ 0 [Szyma´ nska et al. PRL ’06; PRB ’07] [Wouters and Savona PRB ’09] Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 19 / 22

  32. Correlations in a 2D Gas = Correlations: (in 2D) + � � g 1 ( r , r ′ , t ) = ψ † ( r , t ) ψ ( r ′ , 0 ) ≃ | ψ 0 | 2 exp � � − D < φφ ( r , r ′ , t ) D < = D K − D R + D A Generally, get: � � � ln ( r / r 0 ) t ≃ 0 � � ≃ | ψ 0 | 2 exp ψ † ( r , t ) ψ ( 0 , 0 ) − a p 1 2 ln ( c 2 t /γ net r 2 0 ) r ≃ 0 [Szyma´ nska et al. PRL ’06; PRB ’07] [Wouters and Savona PRB ’09] Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 19 / 22

  33. Experimental observation of power-law decay G. Rompos, Y. Yamamoto et al. submitted Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 20 / 22

  34. Experimental observation of power-law decay � r � − a p g 1 ( r , − r ) ∝ r 0 G. Rompos, Y. Yamamoto et al. submitted Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 20 / 22

  35. Exponent in a non-equilibrium 2D gas � � 2 r �� � � = | ψ 0 | 2 exp � � ψ † ( r , 0 ) ψ ( − r , 0 ) − D < lim φφ ( r , − r ) ∝ exp − a p ln r 0 r →∞ Experimentally, a P ≃ 1 . 2 In equilibrium a p = mk B T < 1 4 (BKT transition) 2 π � 2 n s Non-equilibrium theory depends on thermalisation. ◮ Thermalised (yet diffusive modes) a p = mk B T 2 π � 2 n s ◮ Non-thermalised, a P ∝ Pumping noise . n s Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 21 / 22

  36. Exponent in a non-equilibrium 2D gas � � 2 r �� � � = | ψ 0 | 2 exp � � ψ † ( r , 0 ) ψ ( − r , 0 ) − D < lim φφ ( r , − r ) ∝ exp − a p ln r 0 r →∞ Experimentally, a P ≃ 1 . 2 In equilibrium a p = mk B T < 1 4 (BKT transition) 2 π � 2 n s Non-equilibrium theory depends on thermalisation. ◮ Thermalised (yet diffusive modes) a p = mk B T 2 π � 2 n s ◮ Non-thermalised, a P ∝ Pumping noise . n s Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 21 / 22

  37. Exponent in a non-equilibrium 2D gas � � 2 r �� � � = | ψ 0 | 2 exp � � ψ † ( r , 0 ) ψ ( − r , 0 ) − D < lim φφ ( r , − r ) ∝ exp − a p ln r 0 r →∞ Experimentally, a P ≃ 1 . 2 In equilibrium a p = mk B T < 1 4 (BKT transition) 2 π � 2 n s Non-equilibrium theory depends on thermalisation. ◮ Thermalised (yet diffusive modes) a p = mk B T 2 π � 2 n s ◮ Non-thermalised, a P ∝ Pumping noise . n s Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 21 / 22

  38. Exponent in a non-equilibrium 2D gas � � 2 r �� � � = | ψ 0 | 2 exp � � ψ † ( r , 0 ) ψ ( − r , 0 ) − D < lim φφ ( r , − r ) ∝ exp − a p ln r 0 r →∞ Experimentally, a P ≃ 1 . 2 In equilibrium a p = mk B T < 1 4 (BKT transition) 2 π � 2 n s Non-equilibrium theory depends on thermalisation. ◮ Thermalised (yet diffusive modes) a p = mk B T 2 π � 2 n s ◮ Non-thermalised, a P ∝ Pumping noise . n s Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 21 / 22

  39. Exponent in a non-equilibrium 2D gas � � 2 r �� � � = | ψ 0 | 2 exp � � ψ † ( r , 0 ) ψ ( − r , 0 ) − D < lim φφ ( r , − r ) ∝ exp − a p ln r 0 r →∞ Experimentally, a P ≃ 1 . 2 In equilibrium a p = mk B T < 1 4 (BKT transition) 2 π � 2 n s Non-equilibrium theory depends on thermalisation. ◮ Thermalised (yet diffusive modes) a p = mk B T 2 π � 2 n s ◮ Non-thermalised, a P ∝ Pumping noise . n s Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 21 / 22

  40. Conclusion Instability of Thomas-Fermi and spontaneous rotation t=22 t=35 t=56 Survival of superfluid response 3 Real γ net / µ = 0.0 Imaginary γ net / µ = 0.1 frequency γ net / µ = 0.5 2 ρ N / m µ momentum 1 0 0 1 2 3 4 5 T/ µ Power law decay of correlations Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 22 / 22

  41. Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 23 / 35

  42. Extra slides Condensation vs Lasing 5 GPE stability 6 Detecting vortex lattice 7 Calculating superfluid density 8 Measuring superfluid density 9 Finite size coherence and Schawlow-Townes 10 Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 24 / 35

  43. Simple Laser: Maxwell Bloch equations α + g α, k � ǫ α S z H = ω 0 ψ † ψ + ψ S + √ α + H.c. N γ N 0 A γ α Maxwell-Bloch eqns: P = − i � S − � , N = 2 � S z � g κ ∂ t ψ = − i ω 0 ψ − κψ + � α g α P α ∂ t P α = − 2 i ǫ α P α − 2 γ P + g α ψ N α ∂ t N α = 2 γ ( N 0 − N α ) − 2 g α ( ψ ∗ P α + P ∗ α ψ ) Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 25 / 35

  44. Simple Laser: Maxwell Bloch equations α + g α, k � ǫ α S z H = ω 0 ψ † ψ + ψ S + √ α + H.c. N γ N 0 A γ α Maxwell-Bloch eqns: P = − i � S − � , N = 2 � S z � g κ ∂ t ψ = − i ω 0 ψ − κψ + � α g α P α ∂ t P α = − 2 i ǫ α P α − 2 γ P + g α ψ N α ∂ t N α = 2 γ ( N 0 − N α ) − 2 g α ( ψ ∗ P α + P ∗ α ψ ) 0.2 6 0 Absorption Strong coupling. κ, γ < g √ n 4 -0.2 N 0 2 Inversion causes collapse -0.4 before lasing -0.6 0 -1 0 1 ω /g Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 25 / 35

  45. Simple Laser: Maxwell Bloch equations α + g α, k � ǫ α S z H = ω 0 ψ † ψ + ψ S + √ α + H.c. N γ N 0 A γ α Maxwell-Bloch eqns: P = − i � S − � , N = 2 � S z � g κ ∂ t ψ = − i ω 0 ψ − κψ + � α g α P α ∂ t P α = − 2 i ǫ α P α − 2 γ P + g α ψ N α ∂ t N α = 2 γ ( N 0 − N α ) − 2 g α ( ψ ∗ P α + P ∗ α ψ ) 0.2 6 0 Absorption Strong coupling. κ, γ < g √ n 4 -0.2 N 0 2 Inversion causes collapse -0.4 before lasing -0.6 0 -1 0 1 ω /g Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 25 / 35

  46. Simple Laser: Maxwell Bloch equations α + g α, k � ǫ α S z H = ω 0 ψ † ψ + ψ S + √ α + H.c. N γ N 0 A γ α Maxwell-Bloch eqns: P = − i � S − � , N = 2 � S z � g κ ∂ t ψ = − i ω 0 ψ − κψ + � α g α P α ∂ t P α = − 2 i ǫ α P α − 2 γ P + g α ψ N α ∂ t N α = 2 γ ( N 0 − N α ) − 2 g α ( ψ ∗ P α + P ∗ α ψ ) 0.2 6 0 Absorption Strong coupling. κ, γ < g √ n 4 -0.2 N 0 2 Inversion causes collapse -0.4 before lasing -0.6 0 -1 0 1 ω /g Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 25 / 35

  47. Maxwell-Bloch Equations: Retarded Green’s function 0.2 6 0 Absorption 4 -0.2 N 0 2 -0.4 -0.6 0 -1 0 1 ω /g Introduce D R ( ω ) : Response to perturbation Absorption = − 2 ℑ [ D R ( ω )] Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 26 / 35

  48. Maxwell-Bloch Equations: Retarded Green’s function 0.2 6 0 Absorption 4 -0.2 N 0 2 -0.4 -0.6 0 -1 0 1 ω /g ∂ t ψ = − i ω 0 ψ − κψ + � α g α P α Introduce D R ( ω ) : ∂ t P α = − 2 i ǫ α P α − 2 γ P + g α ψ N α Response to perturbation ∂ t N α = 2 γ ( N 0 − N α ) − 2 g α ( ψ ∗ P α + P ∗ α ψ ) Absorption = − 2 ℑ [ D R ( ω )] g 2 N 0 � − 1 � D R ( ω ) = ω − ω k + i κ + ω − 2 ǫ + i 2 γ Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 26 / 35

  49. Maxwell-Bloch Equations: Retarded Green’s function 0.2 6 0 Absorption 4 -0.2 N 0 2 -0.4 -0.6 0 -1 0 1 ω /g ∂ t ψ = − i ω 0 ψ − κψ + � α g α P α Introduce D R ( ω ) : ∂ t P α = − 2 i ǫ α P α − 2 γ P + g α ψ N α Response to perturbation ∂ t N α = 2 γ ( N 0 − N α ) − 2 g α ( ψ ∗ P α + P ∗ α ψ ) 2 B ( ω ) Absorption = − 2 ℑ [ D R ( ω )] = A ( ω ) 2 + B ( ω ) 2 g 2 N 0 � − 1 � D R ( ω ) = ω − ω k + i κ + ω − 2 ǫ + i 2 γ = A ( ω ) + iB ( ω ) Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 26 / 35

  50. Maxwell-Bloch Equations: Retarded Green’s function (a) 0.2 6 1 0 Absorption 4 -0.2 N 0 0 2 -0.4 -0.6 0 -1 A( ω ) -1 0 1 -1 0 1 ω /g ω /g ∂ t ψ = − i ω 0 ψ − κψ + � α g α P α Introduce D R ( ω ) : ∂ t P α = − 2 i ǫ α P α − 2 γ P + g α ψ N α Response to perturbation ∂ t N α = 2 γ ( N 0 − N α ) − 2 g α ( ψ ∗ P α + P ∗ α ψ ) 2 B ( ω ) Absorption = − 2 ℑ [ D R ( ω )] = A ( ω ) 2 + B ( ω ) 2 g 2 N 0 � − 1 � D R ( ω ) = ω − ω k + i κ + ω − 2 ǫ + i 2 γ = A ( ω ) + iB ( ω ) Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 26 / 35

  51. Maxwell-Bloch Equations: Retarded Green’s function (a) 0.2 6 1 0 Absorption 4 -0.2 N 0 0 2 -0.4 A( ω ) -0.6 0 -1 B( ω ) -1 0 1 -1 0 1 ω /g ω /g ∂ t ψ = − i ω 0 ψ − κψ + � α g α P α Introduce D R ( ω ) : ∂ t P α = − 2 i ǫ α P α − 2 γ P + g α ψ N α Response to perturbation ∂ t N α = 2 γ ( N 0 − N α ) − 2 g α ( ψ ∗ P α + P ∗ α ψ ) 2 B ( ω ) Absorption = − 2 ℑ [ D R ( ω )] = A ( ω ) 2 + B ( ω ) 2 g 2 N 0 � − 1 � D R ( ω ) = ω − ω k + i κ + ω − 2 ǫ + i 2 γ = A ( ω ) + iB ( ω ) Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 26 / 35

  52. Maxwell-Bloch Equations: Retarded Green’s function (a) 0.2 (b) 6 1 1 0 Absorption 4 -0.2 N 0 0 0 2 -0.4 A( ω ) A( ω ) -0.6 0 -1 -1 B( ω ) B( ω ) -1 0 1 -1 0 1 -1 0 1 ω /g ω /g ω /g ∂ t ψ = − i ω 0 ψ − κψ + � α g α P α Introduce D R ( ω ) : ∂ t P α = − 2 i ǫ α P α − 2 γ P + g α ψ N α Response to perturbation ∂ t N α = 2 γ ( N 0 − N α ) − 2 g α ( ψ ∗ P α + P ∗ α ψ ) 2 B ( ω ) Absorption = − 2 ℑ [ D R ( ω )] = A ( ω ) 2 + B ( ω ) 2 g 2 N 0 � − 1 � D R ( ω ) = ω − ω k + i κ + ω − 2 ǫ + i 2 γ = A ( ω ) + iB ( ω ) Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 26 / 35

  53. Evolution of poles with Inversion (a) 0.2 (b) 1 6 1 0 Absorption 4 -0.2 N 0 0 0 2 -0.4 A( ω ) A( ω ) -0.6 0 -1 -1 B( ω ) B( ω ) -1 0 1 -1 0 1 -1 0 1 ω /g ω /g ω /g 2 (a) (b) 1 ω /g 0 -1 Zero of Re Zero of Im -2 -(2 γ /g) 2 2 γκ /g 2 Inversion, N 0 Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 27 / 35

  54. Evolution of poles with Inversion (a) 0.2 (b) 1 6 1 0 Absorption 4 -0.2 N 0 0 0 2 -0.4 A( ω ) A( ω ) -0.6 0 -1 -1 B( ω ) B( ω ) -1 0 1 -1 0 1 -1 0 1 ω /g ω /g ω /g Laser: Equilibrium: 2 (a) (b) 2 UP 1 ω /g 0 LP 0 ω /g µ -2 -1 Zero of Re Zero of Im non-condensed condensed -4 -2 -(2 γ /g) 2 2 γκ /g 2 -2 -1.5 -1 -0.5 0 Inversion, N 0 µ /g Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 27 / 35

  55. Luminescence spectrum and Green’s functions − 2 ℑ [ D R ( ω )] = DoS ( ω ) � − 1 � D R ( ω ) = A ( ω ) + iB ( ω ) 2 B ( ω ) DoS ( ω ) = B ( ω ) 2 + A ( ω ) 2 Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 28 / 35

  56. Luminescence spectrum and Green’s functions − 2 ℑ [ D R ( ω )] = DoS ( ω ) iD K ( ω ) = ( 2 n ( ω ) + 1 ) DoS ( ω ) � − 1 � D R ( ω ) = A ( ω ) + iB ( ω ) 2 B ( ω ) DoS ( ω ) = B ( ω ) 2 + A ( ω ) 2 Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 28 / 35

  57. Luminescence spectrum and Green’s functions − 2 ℑ [ D R ( ω )] = DoS ( ω ) iD K ( ω ) = ( 2 n ( ω ) + 1 ) DoS ( ω ) � − 1 � D R ( ω ) = A ( ω ) + iB ( ω ) 2 B ( ω ) DoS ( ω ) = B ( ω ) 2 + A ( ω ) 2 Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 28 / 35

  58. Luminescence spectrum and Green’s functions − 2 ℑ [ D R ( ω )] = DoS ( ω ) iD K ( ω ) = ( 2 n ( ω ) + 1 ) DoS ( ω ) � − 1 -1.5 -1 -0.5 0 0.5 1 � D R ( ω ) = A ( ω ) + iB ( ω ) A( ω ) 1 2 B ( ω ) 0 DoS ( ω ) = B ( ω ) 2 + A ( ω ) 2 3 R ] Density of states, 2 Im[ D Intensity (a.u.) 2 1 0 -1.5 -1 -0.5 0 0.5 1 Energy (units of g) Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 28 / 35

  59. Luminescence spectrum and Green’s functions − 2 ℑ [ D R ( ω )] = DoS ( ω ) iD K ( ω ) = ( 2 n ( ω ) + 1 ) DoS ( ω ) � − 1 -1.5 -1 -0.5 0 0.5 1 � D R ( ω ) = A ( ω ) + iB ( ω ) A( ω ) B( ω ) 1 2 B ( ω ) 0 DoS ( ω ) = B ( ω ) 2 + A ( ω ) 2 3 R ] Density of states, 2 Im[ D Intensity (a.u.) 2 1 0 -1.5 -1 -0.5 0 0.5 1 Energy (units of g) Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 28 / 35

  60. Luminescence spectrum and Green’s functions − 2 ℑ [ D R ( ω )] = DoS ( ω ) iD K ( ω ) = ( 2 n ( ω ) + 1 ) DoS ( ω ) � − 1 -1.5 -1 -0.5 0 0.5 1 � D R ( ω ) = A ( ω ) + iB ( ω ) A( ω ) B( ω ) 1 2 B ( ω ) 0 DoS ( ω ) = B ( ω ) 2 + A ( ω ) 2 3 R ] Density of states, 2 Im[ D C ( ω ) Intensity (a.u.) iD K ( ω ) = 2 B ( ω ) 2 + A ( ω ) 2 1 0 -1.5 -1 -0.5 0 0.5 1 Energy (units of g) Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 28 / 35

  61. Luminescence spectrum and Green’s functions − 2 ℑ [ D R ( ω )] = DoS ( ω ) iD K ( ω ) = ( 2 n ( ω ) + 1 ) DoS ( ω ) � − 1 -1.5 -1 -0.5 0 0.5 1 � D R ( ω ) = A ( ω ) + iB ( ω ) A( ω ) B( ω ) 1 C( ω ) 2 B ( ω ) 0 DoS ( ω ) = B ( ω ) 2 + A ( ω ) 2 3 R ] Density of states, 2 Im[ D C ( ω ) Intensity (a.u.) iD K ( ω ) = Occupation, n( ω ) 2 B ( ω ) 2 + A ( ω ) 2 1 0 -1.5 -1 -0.5 0 0.5 1 Energy (units of g) Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 28 / 35

  62. Stability and evolution with pumping -1.5 -1 -0.5 0 0.5 1 A( ω ) B( ω ) 1 C( ω ) 0 3 R ] Density of states, 2 Im[ D Intensity (a.u.) Occupation, n( ω ) 2 1 0 -1.5 -1 -0.5 0 0.5 1 Energy (units of g) Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 29 / 35

  63. Stability and evolution with pumping -1.5 -1 -0.5 0 0.5 1 A( ω ) B( ω ) 1 C( ω ) 0 3 R ] Density of states, 2 Im[ D Intensity (a.u.) Occupation, n( ω ) 2 1 0 -1.5 -1 -0.5 0 0.5 1 Energy (units of g) � − 1 � D R ( ω ) = ( ω − ξ k )+ i α ( ω − µ eff ) Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 29 / 35

  64. Stability and evolution with pumping -1.5 -1 -0.5 0 0.5 1 A( ω ) B( ω ) 1 C( ω ) 0 3 R ] Density of states, 2 Im[ D Intensity (a.u.) Occupation, n( ω ) 2 1 0 -1.5 -1 -0.5 0 0.5 1 Energy (units of g) � − 1 � D R ( ω ) = ( ω − ξ k )+ i α ( ω − µ eff ) � − 1 � D R ( ω ∗ = 0 → ℑ ( ω ∗ ) ∝ µ eff − ξ k k ) Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 29 / 35

  65. Stability and evolution with pumping -1.5 -1 -0.5 0 0.5 1 A( ω ) B( ω ) 1 C( ω ) 0 1 3 R ] Density of states, 2 Im[ D Energy of zero (units of g) Intensity (a.u.) Occupation, n( ω ) 0 2 1 -1 0 -1.5 -1 -0.5 0 0.5 1 -2 Energy (units of g) Zero of Re Zero of Im � − 1 � D R ( ω ) -3 = ( ω − ξ k )+ i α ( ω − µ eff ) -0.6 -0.5 -0.4 -0.3 Bath occupation, µ B /g � − 1 � D R ( ω ∗ = 0 → ℑ ( ω ∗ ) ∝ µ eff − ξ k k ) Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 29 / 35

  66. Strong coupling and lasing — low temperature phenomenon Eqbm. polariton Non-eqbm. polariton Laser 1 ξ µ eff 0 ω /g -1 non- non- non- -2 condensed condensed condensed condensed condensed condensed -2 -1 0 -2 -1 0 -1 0 1 µ B /g µ /g Inversion, N 0 A( ω ) Laser: Uniformly invert TLS B( ω ) 1 Non-equilibrium polaritons: Cold bath 0 If T B ≫ γ → Laser limit -1.5 -1 -0.5 0 0.5 1 Energy (units of g) Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 30 / 35

  67. Strong coupling and lasing — low temperature phenomenon Eqbm. polariton Non-eqbm. polariton Laser 1 ξ µ eff 0 ω /g -1 non- non- non- -2 condensed condensed condensed condensed condensed condensed -2 -1 0 -2 -1 0 -1 0 1 µ B /g µ /g Inversion, N 0 A( ω ) Laser: Uniformly invert TLS B( ω ) 1 Non-equilibrium polaritons: Cold bath 0 If T B ≫ γ → Laser limit -1.5 -1 -0.5 0 0.5 1 Energy (units of g) Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 30 / 35

  68. Strong coupling and lasing — low temperature phenomenon Eqbm. polariton Non-eqbm. polariton Laser 1 ξ µ eff 0 ω /g -1 non- non- non- -2 condensed condensed condensed condensed condensed condensed -2 -1 0 -2 -1 0 -1 0 1 µ B /g µ /g Inversion, N 0 A( ω ) Laser: Uniformly invert TLS B( ω ) 1 Non-equilibrium polaritons: Cold bath 0 If T B ≫ γ → Laser limit -1.5 -1 -0.5 0 0.5 1 Energy (units of g) Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 30 / 35

  69. Instability of Thomas-Fermi: details 1 2 ∂ t ρ + ∇ · ( ρ v ) = ( γ net − Γ ρ ) ρ ∂ t v + ∇ ( U ρ + m ω 2 r 2 + m 2 | v | 2 ) = 0 2 3 γ net 2 Γ Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 31 / 35

  70. Instability of Thomas-Fermi: details 1 2 ∂ t ρ + ∇ · ( ρ v ) = ( γ net − Γ ρ ) ρ ∂ t v + ∇ ( U ρ + m ω 2 r 2 + m 2 | v | 2 ) = 0 2 3 γ net 2 Γ Normal modes for γ net , Γ → 0: δρ n , m ( r , θ, t ) = e im θ h n , m ( r ) e i ω n , m t � ω n , m = ω 2 m ( 1 + 2 n ) + 2 n ( n + 1 ) Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 31 / 35

  71. Instability of Thomas-Fermi: details 1 2 ∂ t ρ + ∇ · ( ρ v ) = ( γ net − Γ ρ ) ρ ∂ t v + ∇ ( U ρ + m ω 2 r 2 + m 2 | v | 2 ) = 0 2 3 γ net 2 Γ Normal modes for γ net , Γ → 0: δρ n , m ( r , θ, t ) = e im θ h n , m ( r ) e i ω n , m t � ω n , m = ω 2 m ( 1 + 2 n ) + 2 n ( n + 1 ) Add weak pumping/decay: � m ( 1 + 2 n ) + 2 n ( n + 1 ) − m 2 � ω n , n → ω n , m + i γ net 2 m ( 1 + 2 n ) + 4 n ( n + 1 ) + m 2 Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 31 / 35

  72. Instability of Thomas-Fermi: details 1 2 ∂ t ρ + ∇ · ( ρ v ) = ( γ net − Γ ρ ) ρ Unstable growth ∂ t v + ∇ ( U ρ + m ω 2 r 2 + m 2 | v | 2 ) = 0 2 3 γ net 2 Γ Normal modes for γ net , Γ → 0: δρ n , m ( r , θ, t ) = e im θ h n , m ( r ) e i ω n , m t � ω n , m = ω 2 m ( 1 + 2 n ) + 2 n ( n + 1 ) Add weak pumping/decay: � m ( 1 + 2 n ) + 2 n ( n + 1 ) − m 2 � ω n , n → ω n , m + i γ net 2 m ( 1 + 2 n ) + 4 n ( n + 1 ) + m 2 Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 31 / 35

  73. Instability of Thomas-Fermi: details 1 2 ∂ t ρ + ∇ · ( ρ v ) = ( γ net − Γ ρ ) ρ Stabilised ∂ t v + ∇ ( U ρ + m ω 2 r 2 + m 2 | v | 2 ) = 0 2 3 γ net 2 Γ Normal modes for γ net , Γ → 0: δρ n , m ( r , θ, t ) = e im θ h n , m ( r ) e i ω n , m t � ω n , m = ω 2 m ( 1 + 2 n ) + 2 n ( n + 1 ) Add weak pumping/decay: � m ( 1 + 2 n ) + 2 n ( n + 1 ) − m 2 � ω n , n → ω n , m + i γ net 2 m ( 1 + 2 n ) + 4 n ( n + 1 ) + m 2 Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 31 / 35

  74. Detecting vortex lattices 30 25 20 ω 15 10 Snapshot Spectrum: 5 0 −5 0 5 k x Defocussed homodyne intereference: Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 32 / 35

  75. Calculating superfluid response function Using Keldysh generating functional d 2 Z [ f , θ ] χ ij ( q ) = − i � df i ( q ) d θ j ( − q ) , Z [ f , θ ] = D ψ exp ( iS [ f , θ ]) 2 f , θ couple as force/response current. � ¯ � � 2 k i + q i � ψ cl � θ i f i + θ i � ¯ � S [ f , θ ] = S + ψ cl ψ q k + q f i − θ i − θ i ψ q 2 m q k k , q Saddle point + fluctuations: Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 33 / 35

  76. Calculating superfluid response function Using Keldysh generating functional d 2 Z [ f , θ ] χ ij ( q ) = − i � df i ( q ) d θ j ( − q ) , Z [ f , θ ] = D ψ exp ( iS [ f , θ ]) 2 f , θ couple as force/response current. � ¯ � � 2 k i + q i � ψ cl � θ i f i + θ i � ¯ � S [ f , θ ] = S + ψ cl ψ q k + q f i − θ i − θ i ψ q 2 m q k k , q Saddle point + fluctuations: Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 33 / 35

  77. Calculating superfluid response function Using Keldysh generating functional d 2 Z [ f , θ ] χ ij ( q ) = − i � df i ( q ) d θ j ( − q ) , Z [ f , θ ] = D ψ exp ( iS [ f , θ ]) 2 f , θ couple as force/response current. � ¯ � � 2 k i + q i � ψ cl � θ i f i + θ i � ¯ � S [ f , θ ] = S + ψ cl ψ q k + q f i − θ i − θ i ψ q 2 m q k k , q Saddle point + fluctuations: + + + + . . . + Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 33 / 35

  78. Calculating superfluid response function Using Keldysh generating functional d 2 Z [ f , θ ] χ ij ( q ) = − i � df i ( q ) d θ j ( − q ) , Z [ f , θ ] = D ψ exp ( iS [ f , θ ]) 2 f , θ couple as force/response current. � ¯ � � 2 k i + q i � ψ cl � θ i f i + θ i � ¯ � S [ f , θ ] = S + ψ cl ψ q k + q f i − θ i − θ i ψ q 2 m q k k , q Saddle point + fluctuations: Only one diagram for χ N + + + + . . . + Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 33 / 35

  79. Measuring superfluid density 1. Effect rotating frame Polariton polarization: ( ψ � , ψ � ) (a) ℓ 2 r 2 e 2 i φ � � µ c H = λ r 2 e − 2 i φ − ℓ 2 Jonathan Keeling Condensation, superfluidity and lasing RETUNE, June 2012 34 / 35

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend