sum rule for a mixed boundary qkz equation
play

Sum rule for a mixed boundary qKZ equation Caley Finn May 2015, - PowerPoint PPT Presentation

Sum rule for a mixed boundary qKZ equation Caley Finn May 2015, GGI, Firenze In collaboration with Jan de Gier Outline 1 Mixed boundary q KZ equation 2 Sum rule 3 Bases of the Hecke algebra Section 1 Mixed boundary q KZ equation One boundary


  1. Sum rule for a mixed boundary qKZ equation Caley Finn May 2015, GGI, Firenze In collaboration with Jan de Gier

  2. Outline 1 Mixed boundary q KZ equation 2 Sum rule 3 Bases of the Hecke algebra

  3. Section 1 Mixed boundary q KZ equation

  4. One boundary Temperley–Lieb algebra • Generators e 0 , . . . e N − 1 • Bulk relations e 2 i = − [2] e i , e i e i ± 1 e i = e i : = − [2] = = i i i i i +1 i − 1 i • Boundary relations e 2 0 = e 0 , e 1 e 0 e 1 = e 1 : = = 0 1 0 0 1 • With t -number [ u ] = t u − t − u t − t − 1 .

  5. Action on Ballot paths • Ballot path: ( α 0 , . . . , α N ) , with α i ≥ 0 , α i +1 − α i = ± 1 , and α N = 0 . • Ballot paths of length N = 3 Ω = α 1 = α 2 = • Example e 2 | Ω � = = = = = | α 2 � • Will take general vector of the form � | Ψ( z 1 , . . . , z N ) � = ψ α ( z 1 , . . . , z N ) | α � α

  6. Mixed boundary q KZ equation • Write q KZ equation in component form. • For 0 ≤ i ≤ N − 1 (bulk and left boundary) � � � � � � ψ α ( z 1 , . . . , z N ) e i | α � = T i ( − 1) ψ α ( z 1 , . . . , z N ) | α � , α α where T i ( u ) are generators of a Baxterized Hecke algebra (will be defined) • Reflection at the right boundary ψ α ( . . . , z N − 1 , z N ) = ψ α ( . . . , z N − 1 , t 3 z − 1 N ) • Relates Temperley–Lieb action on Ballot paths (LHS) to Hecke algebra action on coefficient functions (RHS).

  7. Baxterized Hecke algebra • Bulk generators ( 1 ≤ i ≤ N − 1 ): T i ( u ) = ( tz i − t − 1 z i +1 ) 1 − π i − [ u − 1] , π i : z i ↔ z i +1 z i − z i +1 [ u ] • Boundary generator T 0 ( u ) = k ( z 1 , ζ 1 ) 1 − π 0 π 0 : z 1 ↔ z − 1 − B 0 ( u ) , 1 , z 1 − z − 1 1 and k ( z 1 , ζ 1 ) , B 0 ( u ) are simple functions. • These generators obey Yang–Baxter (bulk) and reflection equations (boundary).

  8. Solution of the q KZ equation Theorem (de Gier, Pyatov, 2010) The solutions of the q KZ equation have a factorised form ր u i,j � ψ α ( z 1 , . . . , z N ) = T i ( u i,j ) ψ Ω i,j The product is constructed using a graphical representation of the Hecke generators u u T 0 ( u ) = , T i ( u ) = . i − 1 ii +1 0 1

  9. Factorised solutions • Factorised solution for ψ α ( z 1 , . . . , z N )

  10. Factorised solutions • Factorised solution for ψ α ( z 1 , . . . , z N ) • Fill to maximal Ballot path Ω = ( N, N − 1 , . . . , 0)

  11. Factorised solutions • Factorised solution for ψ α ( z 1 , . . . , z N ) • Fill to maximal Ballot path Ω = ( N, N − 1 , . . . , 0) • Label corners with 1 1 1

  12. Factorised solutions • Factorised solution for ψ α ( z 1 , . . . , z N ) • Fill to maximal Ballot path Ω = ( N, N − 1 , . . . , 0) • Label corners with 1 • Label remaining tiles by rule u i,j = max { u i +1 ,j − 1 , u i − 1 ,j − 1 } + 1 1 1

  13. Factorised solutions • Factorised solution for ψ α ( z 1 , . . . , z N ) • Fill to maximal Ballot path Ω = ( N, N − 1 , . . . , 0) • Label corners with 1 • Label remaining tiles by rule u i,j = max { u i +1 ,j − 1 , u i − 1 ,j − 1 } + 1 2 1 1

  14. Factorised solutions • Factorised solution for ψ α ( z 1 , . . . , z N ) • Fill to maximal Ballot path Ω = ( N, N − 1 , . . . , 0) • Label corners with 1 • Label remaining tiles by rule u i,j = max { u i +1 ,j − 1 , u i − 1 ,j − 1 } + 1 3 3 2 1 1

  15. Factorised solutions • Factorised solution for ψ α ( z 1 , . . . , z N ) • Fill to maximal Ballot path Ω = ( N, N − 1 , . . . , 0) • Label corners with 1 • Label remaining tiles by rule u i,j = max { u i +1 ,j − 1 , u i − 1 ,j − 1 } + 1 4 3 3 2 1 1

  16. Factorised solutions • Factorised solution for ψ α ( z 1 , . . . , z N ) • Fill to maximal Ballot path Ω = ( N, N − 1 , . . . , 0) • Label corners with 1 • Label remaining tiles by rule u i,j = max { u i +1 ,j − 1 , u i − 1 ,j − 1 } + 1 5 4 3 3 2 1 1

  17. Factorised solutions • Factorised solution for ψ α ( z 1 , . . . , z N ) • Fill to maximal Ballot path Ω = ( N, N − 1 , . . . , 0) • Label corners with 1 • Label remaining tiles by rule u i,j = max { u i +1 ,j − 1 , u i − 1 ,j − 1 } + 1 5 4 3 3 2 1 1 ψ α = T 0 (1) .T 1 (2) T 0 (3) .T 3 (1) T 2 (3) T 1 (4) T 0 (5) ψ Ω and ψ Ω = ∆ − t ( z 1 , . . . , z N )∆ + t ( z 1 , . . . , z N )

  18. Section 2 Sum rule

  19. Consecutive integer filling • Fill with consecutive integers along rows, e.g. for previous shape tilted by 45 ° ψ 4 , 2 , 1 ( u 1 + 1 , u 2 + 1 , u 3 + 1) u 1 + u 1 +3 u 1 +2 u 1 +1 4 = u 2 + u 2 +1 2 u 3 + 1 • In terms of Hecke generators ψ a 1 ,...,a n ( u 1 + 1 , . . . , u n + 1) = T a n ( u n + 1) . . . T a 1 ( u 1 + 1) ψ Ω where T a ( u + 1) = T a − 1 ( u + 1) . . . T 1 ( u + a − 1) T 0 ( u + a ) • T a ( u + 1) gives a row of length a , numbered from u + 1 .

  20. Staircase diagram • Call the largest such element the staircase diagram : . . . u 1 +1 ψ ¯ a n ( u 1 +1 , . . . , u n +1) = , . . . a 1 ,..., ¯ . . . u n + 1 where n = ⌊ N/ 2 ⌋ , ¯ a i = N − 2 i + 1 . • In terms of Hecke generators ψ ¯ a n ( u 1 + 1 , . . . , u n + 1) a 1 ,..., ¯ = T N − 2 n +1 ( u n + 1) . . . T N − 3 ( u 2 + 1) T N − 1 ( u 1 + 1) ψ Ω .

  21. Generalised sum rule Theorem The staircase diagram has the expansion � ψ ¯ a n ( u 1 + 1 , . . . , u n + 1) = c α ψ α ( z 1 , . . . , z N ) , a 1 ,..., ¯ α where the coefficients c α are non-zero and are monomials in [ u i ] y i = − [ u i + 1] , y i = − B 0 ( u i + 1) . ˜ • At specialization u i = 1 , t = e ± 2 π i / 3 , all coefficients c α = 1 . The sum gives the normalization of Temperley-Lieb loop model ground state vector. The sum has been computed at this point [Zinn-Justin 2007]. • Proof of the sum rule requires expanding staircase diagram in two stages.

  22. First expansion The first stage of the expansion gives the form of the coefficients. Lemma (First expansion) ψ a 1 ,...,a n ( u 1 + 1 , . . . , u n + 1) = T a n ( u n + 1) . . . T a 1 ( u 1 + 1) ψ Ω � = ( T a i (1) + y i T a i − 1 (1) + ˜ y i ) ψ Ω . i = n,n − 1 ,..., 1 where [ u i ] y i = − [ u i + 1] , y i = − B 0 ( u i + 1) . ˜

  23. First expansion terms Procedure to expand ( T a n (1) + y n T a n − 1 (1) + ˜ y n ) . . . ( T a 1 (1) + y 1 T a 1 − 1 (1) + ˜ y 1 ) ψ Ω • Start from the empty outline. • Working from top down, a row may be left empty (factor ˜ y i ), filled one short (factor y i ), or filled completely (no additional factor). • Delete empty rows and boxes.

  24. First expansion terms Procedure to expand ( T a n (1) + y n T a n − 1 (1) + ˜ y n ) . . . ( T a 1 (1) + y 1 T a 1 − 1 (1) + ˜ y 1 ) ψ Ω • Start from the empty outline. • Working from top down, a row may be left empty (factor ˜ y i ), filled one short (factor y i ), or filled completely (no additional factor). • Delete empty rows and boxes. y 1 10 9 8 7 6 5 4 3 2 1

  25. First expansion terms Procedure to expand ( T a n (1) + y n T a n − 1 (1) + ˜ y n ) . . . ( T a 1 (1) + y 1 T a 1 − 1 (1) + ˜ y 1 ) ψ Ω • Start from the empty outline. • Working from top down, a row may be left empty (factor ˜ y i ), filled one short (factor y i ), or filled completely (no additional factor). • Delete empty rows and boxes. y 1 10 9 8 7 6 5 4 3 2 1 1 9 8 7 6 5 4 3 2 1

  26. First expansion terms Procedure to expand ( T a n (1) + y n T a n − 1 (1) + ˜ y n ) . . . ( T a 1 (1) + y 1 T a 1 − 1 (1) + ˜ y 1 ) ψ Ω • Start from the empty outline. • Working from top down, a row may be left empty (factor ˜ y i ), filled one short (factor y i ), or filled completely (no additional factor). • Delete empty rows and boxes. y 1 10 9 8 7 6 5 4 3 2 1 1 9 8 7 6 5 4 3 2 1 1 7 6 5 4 3 2 1

  27. First expansion terms Procedure to expand ( T a n (1) + y n T a n − 1 (1) + ˜ y n ) . . . ( T a 1 (1) + y 1 T a 1 − 1 (1) + ˜ y 1 ) ψ Ω • Start from the empty outline. • Working from top down, a row may be left empty (factor ˜ y i ), filled one short (factor y i ), or filled completely (no additional factor). • Delete empty rows and boxes. y 1 10 9 8 7 6 5 4 3 2 1 1 9 8 7 6 5 4 3 2 1 1 7 6 5 4 3 2 1 y 4 ˜

  28. First expansion terms Procedure to expand ( T a n (1) + y n T a n − 1 (1) + ˜ y n ) . . . ( T a 1 (1) + y 1 T a 1 − 1 (1) + ˜ y 1 ) ψ Ω • Start from the empty outline. • Working from top down, a row may be left empty (factor ˜ y i ), filled one short (factor y i ), or filled completely (no additional factor). • Delete empty rows and boxes. y 1 10 9 8 7 6 5 4 3 2 1 1 9 8 7 6 5 4 3 2 1 1 7 6 5 4 3 2 1 y 4 ˜ y 5 2 1

  29. First expansion terms Procedure to expand ( T a n (1) + y n T a n − 1 (1) + ˜ y n ) . . . ( T a 1 (1) + y 1 T a 1 − 1 (1) + ˜ y 1 ) ψ Ω • Start from the empty outline. • Working from top down, a row may be left empty (factor ˜ y i ), filled one short (factor y i ), or filled completely (no additional factor). • Delete empty rows and boxes. y 1 10 9 8 7 6 5 4 3 2 1 1 9 8 7 6 5 4 3 2 1 1 7 6 5 4 3 2 1 y 4 ˜ y 5 2 1 1 1

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend