study of stimulus waveform effect on nerve excitability
play

Study of Stimulus Waveform Effect on Nerve Excitability and SENN - PowerPoint PPT Presentation

Biomedicine and Molecular Biosciences COST Action BM1309 EMF-MED COST EMF-MED European network for innovative uses of EMFs in biomedical applications Study of Stimulus Waveform Effect on Nerve Excitability and SENN model verification in


  1. Biomedicine and Molecular Biosciences COST Action BM1309 EMF-MED COST EMF-MED European network for innovative uses of EMFs in biomedical applications Study of Stimulus Waveform Effect on Nerve Excitability and SENN model verification in Lumbricus Terrestris as a Convenient Animal Model Prof. Antonio Šarolić, PhD Zlatko Živković, PhD FESB Split 1

  2. Biomedicine and Molecular Biosciences COST Action BM1309 EMF-MED Contents 1. Introduction 2. SENN model 3. Animal model 4. Measurement setup 4. Measurement/simulation results 5. Conclusion 2

  3. Biomedicine and Molecular Biosciences COST Action BM1309 EMF-MED Contents 1. Introduction 2. SENN model 3. Animal model 4. Measurement setup 4. Measurement/simulation results 5. Conclusion 3

  4. Introduction o single axon studies • effects of stimulus parameters • computational stimulation model • controllable measurements o transition ELF -> higher frequencies ( IF range ) • complex pulses (single or repetitive) • optimized biomedical effects (healing, pain relie f,…) • EMF safety (human exposure) • waveform effects (temporal and frequency parameters) 4

  5. Terminology • Threshold level V th [mV] - the transmembrane voltage level that should be exceeded to excite the action potential. • Stimulus threshold level I TH [mA] - the minimum stimulus current magnitude (peak value) just sufficient to excite the nerve and initiate AP propagation. • Monopolar stimulation - the type of electrical stimulation with the active electrode positioned near the nerve that wants to be stimulated. • Bipolar stimulation - the type of stimulation where both the active and return electrode are placed in the close proximity to an axon • Monophasic stimulus - the stimulus with unidirectional current • Biphasic stimulus - the stimulus with bidirectional current 5

  6. Biomedicine and Molecular Biosciences COST Action BM1309 EMF-MED Contents 1. Introduction 2. SENN model 3. Animal model 4. Measurement setup 4. Measurement/simulation results 5. Conclusion 6

  7. McNeal’s and SENN model of myelinated axon d V          n I C I G V 2 V V m m i,n i i,n-1 i,n i,n+1 d t  π 2 d  G   i 4 L i i V n = V i,n - V e,n  INTRACELLULAR MEDIUM L 100 D i R i V i,n-1 R i V i,n R i V i,n+1 R i  d 0.7 D r m r m r m   d V 1 c m c m c m            n G V 2 V V V 2 V V I   i n-1 n n+1 e,n-1 e,n e,n+1 i,n d t C V r V r V r m Second spatial Second spatial difference of difference of unknown extracellural liqid potential V e,n-1 V e,n V e,n+1 transmembrane ( activation function ): EXTRACELLULAR MEDIUM potential Δ 2 V e,n => Δ 2 V e,n /Δx 2 =Δ E e,n /Δ x          π I d w J J J J i,n Na K P L    J G ( V V ) Na Na n Na    J G ( V V ) K K n K SENN model    J G ( V V ) P P n P    J G ( V V ) L L n L Activation function 7

  8. SENN model parameters Parameter Value 20 µm 0,6 Fiber diameter ( D ) 0,5 0.7∙ D Axon diameter at node ( d ) 0,4 2.5 µm Nodal gap ( w ) σ e [S/m] 0,3 Axoplasmic resistivity ( ρ i ) 100 Ωm 0,2 External medium resistivity 300 Ωm 0,1 ( ρ e ) 0 2 µF/cm 2 Membrane capacitance ( c m ) 1 10 100 1000 f [kHz] Membrane conductivity 30.4 mS/cm 2 ( g m ) 100∙ D Internodal distance ( L i ) y A =5 mm L= 20∙ y A =10 cm N R =51 nodes 8

  9. Equivalent time constant - τ Q   rb I rb approximate chronaxie ( τ c ) – equivalent time     ln 2 c constant ( τ ) relation τ=110 µs 9

  10. Biomedicine and Molecular Biosciences COST Action BM1309 EMF-MED Contents 1. Introduction 2. SENN model 3. Animal model 4. Measurement setup 4. Measurement/simulation results 5. Conclusion 10

  11. Lumbricus terrestris (Earthworm) Earthworm 11

  12. Why Earthworm ( lat. Lumbricus Terrestris ) 12

  13. Biomedicine and Molecular Biosciences COST Action BM1309 EMF-MED Contents 1. Introduction 2. SENN model 3. Animal model 4. Measurement setup 4. Measurement/simulation results 5. Conclusion 13

  14. Measurement setup 14

  15. Measurement setup (photo) 15

  16. Biomedicine and Molecular Biosciences COST Action BM1309 EMF-MED Contents 1. Introduction 2. SENN model 3. Animal model 4. Measurement setup 4. Measurement/simulation results 5. Conclusion 16

  17. Single/repetitive monophasic square pulses Single pulse t D =10 µs≈0.1τ t D =200 µs≈2τ I TH =24.75 mA I TH =4.15 mA 120 120 Transmembrane voltage Transmembrane voltage 100 100 change [mV] change [mV] 80 80 1.1*I_TH 60 60 1.1*I_TH I_TH I_TH 40 40 0.9*I_TH 0.8*I_TH 20 20 0.5*I_TH 0.5*I_TH 0 0 0 0.2 0.4 0.6 0.8 1 0 0,2 0,4 0,6 0,8 1 t [ms] t [ms] Repetitive pulses t D =200 µs≈2τ t D =10 µs≈0.1τ t P =200 µs≈2τ t P =200 µs≈2τ Case 3 120 I TH =3.21mA Transmembrane voltage 140 I TH =15 mA Transmembrane voltage 1.2 * I_TH 1.2 * I_TH 100 120 change [mV] I_TH I_TH 100 change [mV] 80 0.8 * I_TH 0.8 * I_TH 80 60 60 40 40 20 20 0 0 0 2 4 6 0 1 2 3 4 -20 -20 t [ms] t [ms] Case 2 120 t D =10 µs≈0.1τ 120 Transmembrane voltage Transmembrane voltage t P =10 µs≈0.1τ 100 1.2 * I_TH 100 I_TH 80 I TH =4.5 mA 80 change [mV] change [mV] 0.8 * I_TH 60 60 1.2 * I_TH t D =200 µs≈2τ 40 40 I_TH t P =10µs≈0.1τ 20 20 0.8 * I_TH I TH =2.21 mA 0 0 0 1 2 3 4 0 0,2 0,4 0,6 0,8 1 -20 -20 17 t [ms] t [ms]

  18. Single/repetitive monophasic square pulses (2) single 20log I     TH dB SR repetitive I TH 14 tP=10 μs 12 tP=30 μs 10 tP=50 μs tP=100 μs 8 Δ SR [dB] tP=300 μs 6 4 2 0 10 100 1000 t D [ μ s] 18

  19. Single/repetitive biphasic square pulses Single pulse D =100 µs D =10 µs 120 120 Transmembrane voltage change Transmembrane voltage change 100 90 80 60 60 I_TH=51.5 mA [mV] [mV] I_TH=4.68 mA 0.8*I_TH 40 30 0.8*I_TH 20 0 0 0 0,2 0,4 0,6 0,8 0 0,2 0,4 0,6 0,8 1 -20 -30 t [ms] t [ms] t D =1 00 µs≈τ t D =1 0 µs≈ 0.1 τ Repetitive pulses µs t D =100 µs 120 120 Transmembrane voltage change Transmembrane voltage change 100 I_TH=4.31 mA 90 80 0.8*I_TH I_TH=27 mA 60 60 [mV] 0.8*I_TH [mV] 40 30 20 0 0 0 0,2 0,4 0,6 0,8 1 0 0,5 1 1,5 2 2,5 -20 -30 t [ms] t [ms] t D =1 00 µs≈τ t D =1 0 µs≈ 0.1 τ 19

  20. Single/repetitive biphasic square pulses (2) 60 Single monophasic pulse 50 Single biphasic pulse 10 monophasic pulses 10 biphasic pulses 40 I TH [mA] 30 20 10 0 10 100 1000 t D [µs] 20

  21. Single cycle/continuous sinusoid Single cycle t D =100 µs t D =10 µs 120 120 Transmembrane voltage Transmembrane voltage 100 1.2*I_TH 100 80 80 I_TH change [mV] change [mV] 60 0.8*I_TH 60 1.2*I_TH 40 40 I_TH 20 20 0.8*I_TH 0 0 0 0,5 1 1,5 2 -20 0 0,2 0,4 0,6 0,8 -20 -40 -40 t [ms] t [ms] I TH =6.2 mA I TH =75 mA Continuous t D =100 µs t D =10 µs 1.2*I_TH 140 160 Transmembrane voltage I_TH 120 Transmembrane voltage 140 1.2*I_TH 120 0.8*I_TH 100 I_TH change [mV] 100 80 change [mV] 0.8*I_TH 80 60 60 40 40 20 20 0 0 -20 0 1 2 3 4 -20 0 0,2 0,4 0,6 0,8 1 -40 -40 t [ms] t [ms] I TH =5.6 mA I TH =36.5mA 21

  22. Single cycle/continuous sinusoid (2) 80 70 Single monophasic pulse Single sinusoidal cycle 60 10 monophasic pulses 50 I TH [mA] 10 sinusoidal cycles 40 30 20 10 0 10 100 1000 t D [µs] 22

  23. Equivalence between repetitive monophasic square pulses and continuous sinusoid - t D = t P 1  f  2 t D 100 Single monophasic pulse with tD=1/2fc (peak value) sine(rms) I Continuous sinusoid with   TH frequency fc (RMS value) I TH [mA] S/P pulse(peak) I 10  TH f 1/2 t c D 11 1 10 1 cycle 1 10 100 9 f c [kHz] 5 cycles 8 sine(rms) 10 cycles 7 I   TH 6 20 cycles ∆ S/P S/P pulse(peak) 5 I 50 cycles  TH 4 f 1/2 t c D 100 cycles 3 2 1 1 0 0.8 0.01 0.1 1 10 100 f [kHz] 0.6 ∆ S/P 0.4 0.2 23 0 1 10 100 fc [kHz]

  24. Measurement results – SD curves 12 Worm 1 Worm 2 10 Worm 3 Worm 4 Worm 5 8 Chronaxie - τ c Time constant - I TH [mA] τ [ms] [ms] 6 Earthworm 1 1 1.44 Earthworm 2 1 1.44 4 Earthworm 3 1.05 1.51 Earthworm 4 0.5 0.72 Earthworm 5 0.55 0.8 2 SENN 0.078 0.11 0 24 t D [ms] 0 1 2 3 4 5

  25. Measurement results – monophasic square pulse 100 Worm 3 Worm 1 Worm 2 100 100 SENN SENN SENN I TH /I rb I TH /I rb I TH /I rb 10 10 10 1 1 1 0.001 0.01 0.1 1 10 0.001 0.01 0.1 1 10 0.01 0.1 1 10 ϒ D =t D / τ ϒ D =t D / τ ϒ D =t D / τ 100 100 Worm 4 Worm 5 SENN SENN I TH /I rb I TH /I rb 10 10 1 1 0.01 0.1 1 0.01 0.1 1 10 ϒ D =t D / τ ϒ D =t D / τ 25

  26. Measurement results – continuous sinusoid 10 Worm 1 Worm 2 Worm 3 Worm 4 I TH [mA] 1 Worm 5 0,1 0,1 1 10 f [kHz] 100 100 100 Worm 1 Worm 2 Worm 3 SENN SENN SENN I TH /I rb I TH /I rb I TH /I rb 10 10 10 1 1 1 0.01 0.1 1 10 0.01 0.1 1 10 0.01 0.1 1 10 ϒ D =t D / τ ϒ D =t D / τ ϒ D =t D / τ 100 100 Worm 4 Worm 5 SENN SENN I TH /I rb I TH /I rb 10 10 26 1 1 0.01 0.1 1 10 0.01 0.1 1 10 ϒ D =t D / τ ϒ D =t D / τ

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend