structural operational semantics for continuous state
play

Structural Operational Semantics for continuous state probabilistic - PowerPoint PPT Presentation

Structural Operational Semantics for continuous state probabilistic processes* Giorgio Bacci (joint with Marino Miculan) Dept. of Mathematics and Computer Science University of Udine, Italy Breakfast Talk 24 May, Aalborg 1 / 1 Structural


  1. Structural Operational Semantics for continuous state probabilistic processes* Giorgio Bacci (joint with Marino Miculan) Dept. of Mathematics and Computer Science University of Udine, Italy Breakfast Talk 24 May, Aalborg 1 / 1

  2. Structural Operational Semantics for CCS Syntax: P ::= nil | a . P | a . P | τ. P | P + P | P � P ( a ∈ A ) x � x nil a . x a . x τ. x x + x ���� � �� � � �� � ���� � �� � � �� � A × X + A × X + X × X + X × X Σ X = 1 + X + α α − − → x ′ − − → y ′ x y α α α α. x − − → x x + y − − → x ′ x + y − − → y ′ α α x − − → x ′ y − − → y ′ → x ′ � y α α x � y − − x � y − − → x � y ′ a a a a − → x ′ − → y ′ − → x ′ − → y ′ x y x y → x ′ � y ′ → x ′ � y ′ τ τ x � y − x � y − λ : Σ( Id × ( P fin ) L ) ⇒ ( P fin T Σ ) L This corresponds to: 2 / 1

  3. Abstract Structural Operational Semantics (distributing syntax over behaviours: λ : Σ B ⇒ B Σ) denotations operations α β Σ X X BX λ -bialgebra Σ β B α Σ BX B Σ X λ X 3 / 1

  4. λ A Σ BA B Σ A Σ β λ initial λ -bialgebra Ba a β λ initial Σ A A BA Σ-algebra u Σ u Bu final Σ Z Z BZ B -coalgebra z α λ final λ -bialgebra B α λ Σ z Σ BZ B Σ Z λ Z 4 / 1

  5. Benefits of the bialgebraic framework [Turi-Plotkin’97] + denotational model on the final B -coalgebra (by co-induction) + operational model on the initial Σ-algebra (by induction) + universal semantics (full-abstaction) initial algebra semantics = final coalgebra semantics + B -behavioural equivalence is a Σ-congruence + B -bisimilarity is a Σ-congruence (if B pres. weak pullbacks) 5 / 1

  6. Congruential Rule Formats [Turi-Plotkin’97] Distributive laws can be specified as sets of derivation rules � � � � 1 ≤ j ≤ m a � � b ∈ B i a � b → y a − − → x i i x i ij 1 ≤ i ≤ n , a ∈ A i 1 ≤ i ≤ n (GSOS) c f ( x 1 , . . . , x n ) − → t image finite corresponds to. . . λ : Σ( Id × ( P fin ) L ) ⇒ ( P fin T Σ ) L 6 / 1

  7. Discrete state sub-Probabilistic Systems . . . hence labelled sub-probabilistic Markov chains • a [ 1 a [ 2 3 ] 3 ] • • X → ( D fin X ) L in Set where D fin : Set → Set (sub-probability distribution functor) � D fin X = { ϕ : X → [0 , 1] | ϕ ( x ) ≤ 1 , | supp ( ϕ ) | < ∞} x ∈ X 7 / 1

  8. � Rule Formats for Probabilistic Systems [Bartels’04]   a − → a ∈ A i , 1 ≤ i ≤ n x i       b   x i − → b ∈ B i , 1 ≤ i ≤ n   l j [ p j ] − − − → y j 1 ≤ i ≤ J x a j          c [ w · p 1 · ... · p J ]  f ( x 1 , . . . , x n ) − − − − − − − − → t image finite corresponds to. . . λ : Σ( Id × ( D fin ) L ) ⇒ ( D fin T Σ ) L where D fin : Set → Set (sub-probability distribution functor) � D fin X = { ϕ : X → [0 , 1] | ϕ ( x ) ≤ 1 , | supp ( ϕ ) | < ∞} x ∈ X 8 / 1

  9. What if the state space is continuous? (example) Let us extend CCS with a quantitative operator P ::= nil | ( c of α ) . P | P + P | P � P ( c ∈ R ≥ 0 ) α ::= a | a | τ ( a ∈ A ) ( c of a ) . P a [?] a [?] (0 of a ) . P ( c of a ) . P . . . ideally we want that the outcomes are uniformly distributed. . . � b 1 � �� � { ( i of a ) . P | i ∈ [ a , b ] } (0 ≤ a ≤ b ≤ c ) U ( c of a ) . P = c dx a 9 / 1

  10. Discrete state Continuous state (labelled Markov chains) (labelled Markov processes) • • a [ 1 a [ 2 a [ 1 a [ 2 3 ] 3 ] 3 ] 3 ] • • {• · · · •} {• · · · •} 10 / 1

  11. Discrete state Continuous state (labelled Markov chains) (labelled Markov processes) • • a [ 1 a [ 2 a [ 1 a [ 2 3 ] 3 ] 3 ] 3 ] • • {• · · · •} {• · · · •} X → ( D fin X ) L in Set D fin : Set → Set (sub-probability distribution functor) � D fin X = { ϕ : X → [0 , 1] | ϕ ( x ) ≤ 1 , | supp ( ϕ ) | < ∞} x ∈ X 10 / 1

  12. Discrete state Continuous state (labelled Markov chains) (labelled Markov processes) • • a [ 1 a [ 2 a [ 1 a [ 2 3 ] 3 ] 3 ] 3 ] • • {• · · · •} {• · · · •} X → ( D fin X ) L X → (∆ X ) L in Set in Meas D fin : Set → Set (sub-probability distribution functor) � D fin X = { ϕ : X → [0 , 1] | ϕ ( x ) ≤ 1 , | supp ( ϕ ) | < ∞} x ∈ X ∆: Meas → Meas (Giry functor) ∆ X = { µ : Σ X → [0 , 1] | µ sub-probability measure } 10 / 1

  13. Aim: Congruential Rule Formats for Probabilistic Processes with Continuous State Spaces . . . hence, inducing distributive laws of type λ : Σ( Id × ∆ L ) ⇒ (∆ T Σ ) L 11 / 1

  14. The shape of transitions The behaviour functor suggests the shape of transitions. . . Discrete state Continuous state a [ p ] a t ′ t t µ measure Σ-term on Σ-terms 12 / 1

  15. Earlier attempts. . . [Cardelli-Mardare’10] 13 / 1

  16. Earlier attempts. . . [Cardelli-Mardare’10] 13 / 1

  17. Earlier attempts. . . [Cardelli-Mardare’10] rather ad (no general 13 / 1

  18. Measure terms We adopt a new syntax to handle measures syntactically Σ: Meas → Meas (process syntax) M : Meas → Meas (measure syntax) a t µ it’s a M -term! 14 / 1

  19. � Measure GSOS rule format a ij � � 1 ≤ j ≤ m i � � b ∈ B i b − − → µ ij − → x i x i 1 ≤ i ≤ n , a ij ∈ A i 1 ≤ i ≤ n c f ( x 1 , . . . , x n ) − → µ (MGSOS) where + f ∈ Σ with ar ( f ) = n ; + { x 1 , . . . , x n } and { µ ij | 1 ≤ i ≤ n , 1 ≤ j ≤ m i } are pairwise distinct process and measure variables ; + A i ∩ B i = ∅ are disjoint subsets of labels in L , and c ∈ L ; + µ is a M -term with variables in { x 1 , . . . , x n } and { µ ij | 1 ≤ i ≤ n , 1 ≤ j ≤ m i } . 15 / 1

  20. Measure GSOS specification systems An MGSOS specification system consists of Set of MGSOS rules:   a ij � � 1 ≤ j ≤ m i � � b � b ∈ B i x i − − → µ ij x i − →   1 ≤ i ≤ n , a ij ∈ A i 1 ≤ i ≤ n R = c f ( x 1 , . . . , x n ) − → µ   image finte Measure terms interpretation: � | · | � : T M ∆ ⇒ ∆ T Σ 16 / 1

  21. From MGSOS to labelled Markov processes We can obtain a ∆ L -coalgebra on the set of closed Σ-terms γ : T Σ 0 → ∆ L T Σ 0 as � � α γ ( t )( α ) = ⊕ T Σ 0 {� | µ | � T Σ 0 | t − → µ } where, for a finite set of U = { µ 1 , . . . , µ n } of sub-probability measures over X , ⊕ X ( { µ 1 , . . . , µ n } )( E ) = µ 1 ( E ) + · · · + µ n ( E ) µ 1 ( X ) + · · · + µ n ( X ) (weighted sum of sub-probability measures) 17 / 1

  22. Example: Quantitative CCS Measure terms syntax: ( c , c ′ ∈ R ≥ 0 ) µ ::= U α c [ P ] | D [ P ] | µ | µ | µ � c , c ′ µ Measure GSOS Rules*: α, c τ − → D [ x ] ( c of α ) . x − − − → U α c [ x ] (0 of α ) . x α, c α, c − − − → µ − − − → µ x x α, c α, c x + x ′ x � x ′ → µ | D [ x ′ ] − − − → µ − − − α, c α, c ′ a , c a , c ′ x ′ → µ ′ x ′ → µ ′ − − − → µ − − − − − → µ − − − x x τ α, c + c ′ x � x ′ → µ � c , c ′ µ ′ − x � x ′ → µ | µ ′ − − − − − (*) dual rules for + and � are omitted 18 / 1

  23. Example: Quantitative CCS Measure term interpretation: � | · | � X : T M ∆ X ⇒ ∆ T Σ X � 1 where E ′ = [0 , c ] ∩ ( λǫ. ( ǫ of α ) . x ) − 1 ( E ) � | U α c [ x ] | � X ( E ) = c dy E ′ � if x ∈ E 1 � | D [ x ] | � X ( E ) = 0 otherwise � X ) ◦ ( λ ( x , x ′ ) . x � x ′ ) − 1 ( E ) � | µ | µ ′ | � X ( E ) = ( � | µ | � X ⊗ � | µ ′ |  � X ( A 1 ) = c ′ · � | µ ′ | 1 if c · � | µ | � X ( A 2 ) ,   for A i = π i (( λ ( x , x ′ ) . x � x ′ ) − 1 ( E )) � | µ � c , c ′ µ ′ | � X ( E ) =   0 otherwise 19 / 1

  24. From MGSOS to distributive laws Σ( Id × ∆ L ) how do we get the distributive law λ λ out of an MGSOS specification systems? (∆ T Σ ) L 20 / 1

  25. From MGSOS to distributive laws Σ( Id × ∆ L ) 1. define the natural transformation � R � � R � from the image finite set MGSOS rules ( P fin T M ∆) L (∆ T Σ ) L 20 / 1

  26. From MGSOS to distributive laws Σ( Id × ∆ L ) 1. define the natural transformation � R � � R � from the image finite set MGSOS rules ( P fin T M ∆) L � ) L 2. apply the measure terms interpretation ( P fin � | · | � | · | � : T M ∆ ⇒ ∆ T Σ ( P fin ∆ T Σ ) L (∆ T Σ ) L 20 / 1

  27. From MGSOS to distributive laws Σ( Id × ∆ L ) 1. define the natural transformation � R � � R � from the image finite set MGSOS rules ( P fin T M ∆) L � ) L 2. apply the measure terms interpretation ( P fin � | · | � | · | � : T M ∆ ⇒ ∆ T Σ ( P fin ∆ T Σ ) L 3. obtain the actual measure by averaging ( ⊕ T Σ ) L ⊕ X ( { µ 1 , . . . , µ n } )( E ) = µ 1 ( E )+ ··· + µ n ( E ) µ 1 ( X )+ ··· + µ n ( X ) (∆ T Σ ) L 20 / 1

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend