straight line rolling of an ellipsoid on a plane and the
play

Straight line rolling of an ellipsoid on a plane and the Chasles - PowerPoint PPT Presentation

Straight line rolling of an ellipsoid on a plane and the Chasles theorem Yuri F edorov, UPC, Barcelona (still Spain) X 2 + X 2 + X 2 R 3 = ( X 1 , X 2 , X 3 ) 1 1 3 Q = = 1 A 1 A 2 A 3 n No slip no twist The


  1. Straight line rolling of an ellipsoid on a plane and the Chasles theorem Yuri F¨ edorov, UPC, Barcelona (still Spain) � X 2 + X 2 + X 2 � ⊂ R 3 = ( X 1 , X 2 , X 3 ) 1 1 3 Q = = 1 A 1 A 2 A 3 � n � γ No slip no twist

  2. The Jacobi geodesic problem on the ellipsoid Q Linealization of the geodesic flow on Q (Jacobi and Weierstrass): Let λ 1 , λ 2 be the ellipsoidal coordinates on Q , ( A i − λ 1 )( A i − λ 2 ) X 2 i = A i ( A i − A j )( A i − A k ) , i = 1 , 2 , 3 . After time re-parametrization ds = λ 1 λ 2 ds 1 , reduction to quadratures (Jacobi, 1881) d λ 1 d λ 2 + = ds 1 , � � 2 R ( λ 1 ) 2 R ( λ 2 ) λ 1 d λ 1 λ 2 d λ 2 + = 0 , � � 2 R ( λ 1 ) 2 R ( λ 2 ) R ( λ ) = − λ ( λ − A 1 )( λ − A 2 )( λ − A 3 )( λ − c ) where c is a constant of motion such that the geodesic is tangent to the caustic Q ∩ Q c .

  3. Geodesic flow on n − 1-dimensional quadric Family of confocal quadrics in R n ( X 1 , . . . , X n ) X 2 X 2 � � 1 n Q ( c ) = A 1 − c + · · · + A n − c = 1 , c ∈ R . Theorem (Chasles) Let X ( s ) be a geodesic on Q = Q (0) with a natural parameter s and � γ ( s ) = dX / ds be the tangent vector. Then 1) the tangent line ℓ = { X + t � γ | t ∈ R } is also tangent to n − 1 fixed confocal quadrics Q ( c 1 ) = Q (0) , Q ( c 2 ) , . . . , Q ( c n − 1 ). 2) Let � q j be a unit normal vector of Q ( c j ) at the contact point p j = ℓ ∩ Q ( c j ). The vectors � q 1 , . . . ,� q n − 1 , γ form an orthogonal frame in R n .

  4. Theorem (following J.Moser) When X ( s ) traces a geodesic on Q , the evolution of � q 1 , . . . ,� q n − 1 , γ is described by d d ds � q j = − Ω� q j , j = 1 , . . . , n − 1 , ds � γ = − Ωγ, Ω = � X , A − 2 X � A − 1 X ∧ A − 1 γ = � q ∧ A − 1 γ . Corollary. In the reference frame R = { � q 1 , . . . ,� q n − 1 , γ } the ellipsoid Q rolls on the hyperplane H = span( � q 1 2 , . . . ,� q n − 1 , γ ) without slipping and twisting. On H the contact point Q ∩ H moves alongs the line L =span( � γ ). On the ellipsoid Q the contact point traces the geodesic X ( s ). In the frame R the angular velocity of Q has the form   0 Ω 12 · · · Ω 1 , n Ω 12 0 · · · 0   ¯ Ω =  . . .  ... . . .   . . .   Ω 1 , n 0 · · · 0 For n = 3 the angular velocity vector of Q satisfies � ¯ ω,� q 1 � = 0

  5. Relation with the Neumann system (H. Kn¨ orrer) Let X ( s ) be a geodesic on Q , and q ( s ) = q 1 ( s ) be the normal unit vector of Q at the point X . Then q ( s 1 ) is a solution of the Neumann problem on S n − 1 = {� q , q �} = 1 with H = 1 q � − � q , Iq � ), I = A − 1 : 2 ( � ˙ q , ˙ d 2 q = Iq + ν q , ds 2 1 provided that ds = � X , A − 2 X � ds 1 .

  6. Separation of variables for the Neumann system Let λ 1 , . . . , λ n − 1 be spheroconical coordinates on S n − 1 = {� q , q � = 1 } : i = ( I i − λ 1 ) · · · ( I i − λ n − 1 ) q 2 , � j � = i ( I i − I j ) then  d λ 1 d λ n − 1 + · · · + = 0 ,   � � 2 R ( λ 1 ) 2 R ( λ n − 1 )      · · · · · · λ n − 2 + · · · + λ n − 2  n − 1 d λ n − 2 d λ 1   1  = ds 1 ,   � � 2 R ( λ 1 ) 2 R ( λ n − 1 )  R ( λ ) = − ( λ − I 1 ) · · · ( λ − I n ) · ( λ − C 1 ) · · · ( λ − C n − 1 ) , C 1 = 0 , C j = 1 / c j j = 2 , . . . , n − 1

  7. The rotation matrix of Q in the fixed frame R = { � q 1 , . . . ,� q n − 1 , γ } : q n − 1 γ ) T ∈ SO ( n ) R = ( � q 1 · · · � in terms of points P 1 = ( λ 1 , µ 1 ) , . . . , P n − 1 = ( λ n − 1 , µ n − 1 ) on the genus g = n − 1 hyperelliptic curve Γ : µ 2 = − ( λ − I 1 ) · · · ( λ − I n ) · ( λ − C 1 ) · · · ( λ − C n − 1 ) , C 1 = 0 � U ( I i ) q 1 , i = , i = 1 , . . . , n , � Ψ ′ ( I i ) n − 1 � � U ( I i ) U ( C s ) � µ k q s , i = ( I i − λ k )( C s − λ k ) , s = 2 , . . . , n − 1 , � � Ψ ′ ( I i ) ψ ′ ( C s ) k =1 n − 1 � � U ( I i ) U (0) � µ k γ i = ( I i − λ k ) λ k , � � Ψ ′ ( I i ) ψ ′ (0) k =1 where U ( r ) = ( r − λ 1 ) · · · ( r − λ n − 1 ) , Ψ( λ ) = ( λ − I 1 ) · · · ( λ − I n ) , ψ ( λ ) = ( λ − C 1 ) · · · ( λ − C n − 1 ) . ( Following Yu. F., B. Jovanovi´ c. J. Nonl. Sci. 2004)

  8. The angular velocity of Q in the frame R = { � q 1 , . . . ,� q n − 1 , γ }   0 Ω 12 · · · Ω 1 , n Ω 12 0 · · · 0   ¯ Ω =  . . .  ... . . .   . . .   Ω 1 , n 0 · · · 0 with n − 1 � � U (0) U ( C s ) µ k � Ω 1 , s = λ k ( C s − λ k ) , s = 2 , . . . , n − 1 , � � ψ ′ (0) ψ ′ ( C s ) k =1 � U (0) Ω 1 , n = . � ψ ′ (0) The coordinates of the center of Q in R : ( � X , q 1 � , · · · , � X , q n − 1 � , s + � X , γ � ) , � � X = λ 1 · · · λ n − 1 Aq 1 , s = λ 1 · · · λ n − 1 ds 1 .

  9. The angular velocity of the frame R = { � q 1 , . . . ,� q n − 1 , γ } with respect to the axes { X 1 , . . . , X n } of the ellipsoid Q : n − 1 � � U ( I i ) U ( I j ) µ k � ω ij = ( I i − λ k )( I j − λ k ) , 1 ≤ i < j ≤ n . � � Ψ ′ ( I i ) Ψ ′ ( I j ) k =1

  10. Theta-function solution Let B be the g × g period matrix of the genus g = n − 1 curve Γ : µ 2 = − ( λ − I 1 ) · · · ( λ − I n ) · ( λ − C 1 ) · · · ( λ − C n − 1 ) , C 1 = 0 . Introduce the corresponding theta-function � θ ( z | B ) = exp( � BM , M � / 2 + � M , z � ) , M ∈ Z g g g � � z ∈ C g , � M , z � = M i z i , � BM , M � = B ij M i M j , i =1 i , j =1 as well as theta-functions with characteristics α = ( α 1 , . . . , α g ), β = ( β 1 , . . . , β g ), α j , β j ∈ R , which are obtained from θ ( z | B ) by shifting the argument z and multiplying by an exponent: � α � θ ( z ) = exp {� B α, α � / 2 + � z + 2 πβ, α �} θ ( z + 2 πβ + B α ) . β

  11. Theta-function solution (II) • Half-integer theta-characteristics η i = [ η ′′ i , η ′ i ] such that � ( I i , 0) � ( C i , 0) 2 π η ′′ i + B η ′ i = ω ¯ or = ω ¯ ∞ ∞ The rotation matrix of Q in the fixed frame R is  θ [ η I 1 ]( z ) θ [ η I 1 + η C 2 ]( z ) θ [ η I 1 + η C 1 ]( z )  σ 1 ε 1 κ 1 θ ( z ) θ ( z ) θ ( z )     θ [ η I 2 ]( z ) θ [ η I 2 + η C 2 ]( z ) θ [ η I 2 + η C 1 ]( z )   R = σ 2 ε 2 κ 2 ,   θ ( z ) θ ( z ) θ ( z )    θ [ η I 3 ]( z ) θ [ η I 3 + η C 2 ]( z ) θ [ η I 3 + η C 1 ]( z )   σ 3 ε 3  κ 3 θ ( z ) θ ( z ) θ ( z ) v ∈ C n , z 0 = const ∈ C n . z = v s 1 + z 0 ,

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend