stochastic lagrangian models
play

Stochastic Lagrangian Models Mireille Bossy Tosca Laboratory - PowerPoint PPT Presentation

Stochastic Lagrangian Models Mireille Bossy Tosca Laboratory Sophia Antipolis M editerann ee RICAM Special Semester Computational Methods in Science and Engineering School 2: Numerics for Stochastic Partial Differential Equations and


  1. The tow following assertions are equivalent : (Tanaka 82) • P N is P -chaotic • µ N converges weakly toward the (deterministic) measure P Theorem (M´ el´ eard 95) � � � � | X i , N | 2 | X i t | 2 sup E sup + sup E sup < ∞ t N 0 ≤ t ≤ T N 0 ≤ t ≤ T � � | X i , N − X i t | 2 < ∞ , sup N E sup t N 0 ≤ t ≤ T where � t � t X i t = X i σ [ X i s , ρ s ] dW i b [ X i 0 + s + s , ρ s ] ds 0 0 with ρ t = P ◦ X − 1 . t 17

  2. Numerical approximation � t � t X t = X 0 + σ [ X s , ρ s ] dW s + b [ X s , ρ s ] ds , with ρ s = Law ( X s ) . 0 0 Spatial discretisation : � t � t X i , N X i σ [ X i , N s , µ N s ] dW i b [ X i , N s , µ N s ] ds , i ≤ N . = 0 + s + t 0 ) Time-Discretisation : ∆ t > 0 , such that T = K ∆ t for K ∈ N ,  � N   k ∆ t + ( 1 i , N j , N  X i , N X i , N ¯ ( k + 1 )∆ t = ¯ k ∆ t ))( W i ( k + 1 )∆ t − W i  σ ( X k ∆ t , X k ∆ t )  N    j = 1 N � + ∆ t ( 1  b (¯ X i , N k ∆ t , ¯ X j , N k ∆ t )) ,    N   j = 1   X i , N ¯ t = 0 = X i 0 . � N ( x ) = 1 N ,ε, ∆ t φ ε ( x − ¯ X i , N k ∆ t ) , pour un cut-off donn´ e φ . U k ∆ t N i = 1 18

  3. Rate of convergence Theorem (Bossy & Talay 97) Dimension d = 1 . K ( R ) , b ( · , · ) ∈ C 2 , 2 Assume that ρ 0 ( · ) ∈ C 2 b ( R 2 ) and s ( · , · ) ∈ C 3 b ( R 2 ) . Assume the strong ellipticity of the differential operator L . Then ρ t ( · ) ∈ W 2 , 1 ( R ) for all t ∈ [ 0 , T ] . For a 2-order cut-off φ ( x ) , ∀ k ≤ K , � � √ ∆ t 1 N ,ε, ∆ t N + ε 2 + √ E � U − ρ k ∆ t � L 1 ( R ) ≤ C b ,σ, T ,ρ 0 . k ∆ t ε ε H ( x ) := 1 { x ≥ 0 } , Heaviside function � 1 � N � √ E � ( H ∗ ρ k ∆ t )( x ) − 1 i , N H ( x − X k ∆ t ) � L 1 ( R ) ≤ C b ,σ, T ,ρ 0 √ N + ∆ t . N i = 1 19

  4. Rate of convergence Theorem (Antonelli & Kohatsu-Higa 02) d = 1 . b ( · , · ) and s ( · , · ) C ∞ ( R 2 ) , with bounded derivatives. A non degenerescency condition for L (Malliavin calculus). φ ( x ) is the Gaussian density on R . ε 2 = ∆ t . � � 1 1 N ,ε, ∆ t √ √ E � U − ρ k ∆ t � L 1 ( R ) ≤ C b ,σ, T ,ρ 0 + ∆ t + . k ∆ t ∆ tN N H ( x ) := 1 x ≥ 0 , Heaviside function, � 1 � � N E � ( H ∗ ρ k ∆ t )( x ) − 1 i , N H ( x − X k ∆ t ) � L 1 ( R ) ≤ C b ,σ, T ,ρ 0 √ N + ∆ t . N i = 1 20

  5. Incompressible 2 d -Navier Stokes equation V ( t , x ) = ( v 1 ( t , x ) , v 2 ( t , x )) and p ( t , x ) solution to  ∂ t V = ν ∆ V − ( V · ∇ ) V − ∇ p , t ≥ 0 , x ∈ R 2 ,  ∇ · V = ∂ x 1 v 1 + ∂ x 2 v 2 = 0 , (7)  V ( 0 , x ) = V 0 ( x ) . Vorticity formulation : U = ∇ × V = ∂ x 1 v 2 − ∂ x 2 v 1 obtained by derivation.  � � ∂ U  U ( � , x ∈ R 2 ,  ∂ t ( t , x ) = ν ∆ U ( t , x ) − ∇ . K ∗ U )( t , x ) (8) V ( x , t ) = ( � � K ∗ U )( x , t ) ,   U ( 0 , x ) = ( ∇ × V 0 ) ( x ) , 1 � with K ( x 1 , x 2 ) = 2 )( − x 2 , x 1 ) . 2 π ( x 2 1 + x 2 Chorin 73 : Random Vortex Method. 21

  6. N. S. incompressible 2 d : probabilistic Interpretation Marchioro & Pulvirenti 82, Osada 85, M´ el´ eard 01 - Introduce a martingale problem, where the weighted marginal density laws ( � P t ) t ≥ 0 from a solution P , solve the vortex equation and V ( t , x ) = ( � K ∗ � P t )( x ) . - Convergence of the empirical measure of the associated particle system to the unique solution of the martingale problem (chaos propagation). - Convergence of the velocity field given by the empirical measure to the solution of the NS equation V N ( t , x ) = ( � µ N K ∗ � t )( x ) to V ( t , x ) . 22

  7. Numerical analysis : by splitting method - Convergence of the vortex algorithm, Beale & Majda 82, Goodman 87, . . . - A first rate of convergence result Long 88: Assume that U 0 has compact support. Fix h , Λ h = { h . i , i ∈ Z 2 } . � U h h 2 w i δ ( x − α i ) 0 ( x ) = Λ h ∩ Supp ( U 0 ) φ ∈ C L ( R 2 ) cut–off function of order m , with fast decay at infinity The particle system : � � � √ dX ε, h , i X ε, h , i − X ε, h , j w j h 2 K ε 2 ν dW i = dt + t . t t t j � � � V ε, h ( t , x ) = x − X ε, h , j w j h 2 K ε . t j 23

  8. N. S. incompressible 2 d : rate of convergence ? (Long 88) Choose ε ≥ h q , q < 1 . Assume that V ( t , x ) is smooth enough. � � � h � L � � ε m + � V ε, h ( t , x )( ω ) − V ( t , x ) � sup L p ( B ( R 0 )) ≤ C ε + h | ln h | ε 0 ≤ t ≤ T except for ω in A , an event of probability smaller than h C ′ C , with C > 0 and C ′ > 0 depending in all the parameters ( T , L , m , p , q , R 0 , V 0 , ∂ i , j V ) . 24

  9. Incompressible N.S. in a bounded domain O ⊂ R 2 V ( t , x ) = ( v 1 ( t , x ) , v 2 ( t , x )) and p ( t , x ) solve  ∂ t V = ν ∆ V − ( V · ∇ ) V − ∇ p , t ≥ 0 , x ∈ O ,  ∇ · V = ∂ x 1 v 1 + ∂ x 2 v 2 = 0 (9)  V ( 0 , x ) = V 0 ( x ) , V ( t , x ) = 0 , x ∈ ∂ O . Vorticity equation : U = ∂ x 1 v 2 − ∂ x 2 v 1  ∂ U  ∂ t ( t , x ) = ν ∆ U ( t , x ) − ∇ . ( UV ( t , x )) , x ∈ O ,  ∇ · V = 0 ⇒ V = ∇ ⊥ ψ = ( ∂ x 2 ψ, − ∂ x 1 ψ ) with U = − ∆ ψ,   U t = 0 = U 0 = ∇ × � V 0 , � Choose ψ ( t , x ) = − O γ ( x , y ) U ( t , y ) dy , where γ is the Green function of ∆ on O with homogeneous Dirichlet condition � ∇ ⊥ V ( t , x ) = − x γ ( x , y ) U ( t , y ) dy . O Resulting boundary condition for the vorticity : ∀ x ∈ ∂ O , ψ ( t , x ) = 0 ⇒ ∂ τ ψ = 0 ⇒ V . n = 0 . 25

  10. Incompressible N.S. in O : probabilistic interpretation We need to vanish the tangential velocity V .τ = 0 on ∂ O , from the vorticity created at the boundary ( Vortex sheet method , Chorin 73, 78) - Benachour Roynette Vallois 01 : Branching process at the boundary for the Vorticity SDE Difficult to simulate the associated particle system. - Jourdain & M´ el´ eard 04 : give a probabilistic interpretation of the Vorticity equation with additional Neumann boundary condition  ∂ U   ∂ t ( t , x ) = ν ∆ U ( t , x ) − ∇ . ( UV ( t , x )) , x ∈ O , U t = 0 = U 0 = ∇ × � V 0 in O ,   ∂ n U ( t , x ) = g ( t , x ) in ] 0 , T [ × ∂ O . - Cottet 89 proposes a non linear Neumann boundary condition, that exactly produces the no slip boundary condition of N.S. 26

  11. Outline � Stochastic particle methods for McKean SDEs � Lagrangian viewpoint in turbulence modeling Applications Atmospheric boundary layer simulation Wind farm simulation � Well posedness results of SLM (toy models) boundary condition mass constraint � Numerical analysis for SLM (toy models) 27

  12. SLM for Atmospheric Boundary Layer simulation 28

  13. Multiphase flows 29

  14. Statistical approach of turbulent flows Eulerian description ◮ The incompressible Navier Stokes equation in R 3 , for the velocity field ( U ( 1 ) , U ( 2 ) , U ( 3 ) ) and the pressure P , with constant mass density ̺ ∂ t U ( ω ) + ( U ( ω ) · ∇ ) U ( ω ) = ν △ U ( ω ) − 1 ̺ ∇ P ( ω ) , t > 0 , x ∈ R 3 , ∇ · U ( ω ) = 0 , t ≥ 0 , x ∈ R 3 , U ( 0 , x ) ( ω ) = U 0 ( x ) ( ω ) , x ∈ R 3 . ◮ Ensemble averages as expectations: � � U � ( t , x ) := U ( t , x , ω ) d P ( ω ) . Ω Reynolds decomposition U ( t , x , ω ) = � U � ( t , x ) + u ′ ( t , x , ω ) , P ( t , x , ω ) = � P � ( t , x ) + p ′ ( t , x , ω ) The random field u ′ ( t , x , ω ) is the turbulent part of the velocity. 30

  15. Reynolds-Averaged Navier-Stokes (RANS) Equation Assuming Reynolds decomposition, with constant mass density ̺ , we get � 3 � 3 j � = ν △� U ( i ) � − 1 ∂ t � U ( i ) � + � U ( j ) � ∂ x j � U ( i ) � + ∂ x j � u ′ i u ′ ̺∂ x i � P � , j = 1 j = 1 ∇ · � U � = 0 , t ≥ 0 , x ∈ R 3 , � U � ( 0 , x ) = � U 0 � ( x ) , x ∈ R 3 , closed by a chosen parameterization or a model equation of the Reynolds stress tensor ( � u ′ i u ′ j � = � U ( i ) U ( j ) � − � U ( i ) �� U ( j ) � , i , j ) . � 3 Turbulent kinetic energy tke ( t , x ) := 1 � u ′ i u ′ i � ( t , x ) 2 i = 1 � 3 � 3 � ∂ x k u ′ i ∂ x k u ′ i � ( t , x ) Pseudo-dissipation ε ( t , x ) := ν i = 1 k = 1 31

  16. Equation for the Reynolds stress ( � u ′ i u ′ j � , i , j ) � 3 � � ∂ t � u ′ i u ′ � U � · ∇ x � u ′ i u ′ ∂ x k � u ′ i u ′ j u ′ j � + j � + k � k = 1 − 1 j ∂ x i p ′ + u ′ ̺ � u ′ i ∂ x j p ′ � + ν △ x � u ′ i u ′ = j � � �� � velocity pressure gradient tensor Π ij � 3 � ∂ x k u ′ i ∂ x k u ′ + ν j � k = 1 � �� � dissipation tensor ε ij � � 3 � � u ′ i u ′ k � ∂ x k � U ( i ) � + � u ′ j u ′ k � ∂ x k � U ( j ) � − k = 1 � �� � turbulence production tensor P ij 32

  17. Alternative viewpoint The PDF approach Let ρ Euler ( t , x ; V ) be the probability density function of the (Eulerian) random field U ( t , x ) , then � � U ( i ) � ( t , x ) = R 3 V ( i ) ρ Euler ( t , x ; V ) dV , � � U ( i ) U ( j ) � ( t , x ) = R 3 V ( i ) V ( j ) ρ Euler ( t , x ; V ) dV . The closure problem is reported on the PDE satisfied by the probability density function ρ Euler . � This is the so-called PDF method. In his seminal work, Stephen B. Pope proposes to model the PDF ρ Euler with the Lagrangian probability density function, or equivalently with a Lagrangian description of the flow. 33

  18. Lagrangian description for turbulent flow On a given probability space (Ω , F , P ) , consider the fluid particle state vector ( X t , U t , θ t ) satisfying d X t = U t dt , � � − 1 d U t = ̺ ∇ x � P � ( t , X t ) − G ( t , X t ) ( U t − � U � ( t , X t )) + F t dt � + C ( t , X t ) ε ( t , X t ) dW t , d θ t = D 1 ( t , X t , θ t ) dt + D 2 ( t , X t , θ t ) d � W t . ( W , � W ) is a ( 3 d × 1 d ) -Brownian motion. � � U ( i ) � ( t , x ) , � U ( i ) U ( j ) � ( t , x ) are computed as conditional expectations. � ε , C , G , D 1 , D 2 are determined by a chosen Reynolds-averaged Navier-Stokes closure. 34

  19. Compute the Reynolds averages � U ( i ) � and � U ( i ) U ( j ) � Let ρ Lagrangian ( t ; x , V , ψ ) be the probability density function of ( X t , U t , θ t ) . Eulerian PDF versus Lagrangian PDF: (case of incompressible flow, constant mass of particles) ρ Lagrangian ( t ; x , V , ψ ) � ρ Euler ( t , x ; V , φ ) dVd φ = R 4 ρ Lagrangian ( t ; x , U , ψ ) dUd ψ dVd φ For any random variable F ( U t , θ t ) , with finite moment, � � F ( U , ϑ ) � ( t , x ) = R 4 F ( V , ψ ) ρ Euler ( t , x ; V , ψ ) dVd ψ � � � � X t = x = E F ( U t , θ t ) In particular, � � � U ( i ) � X t = x � U ( i ) � ( t , x ) = E t � � � � U ( i ) U ( j ) � ( t , x ) = E U ( i ) U ( j ) � X t = x t t 35

  20. Fluid particle model family On a given probability space (Ω , F , P ) , consider the fluid particle state vector ( X t , U t , ψ t ) satisfying d X t = U t dt � � − 1 d U t = ̺ ∇ x � P � ( t , X t ) − G ( t , X t ) ( U t − � U � ( t , X t )) + F t dt � + C ( t , X t ) ε ( t , X t ) dW t , d θ t = D 1 ( t , X t , θ t ) dt + D 2 ( t , X t , θ t ) d � W t . ( W , � W ) is a ( 3 d × 1 d ) -Brownian motion. The Eulerian fields � U ( i ) � ( t , x ) , � U ( i ) U ( j ) � ( t , x ) , � ϑ U ( j ) � ( t , x ) , and their derivatives, are nonlinear McKean terms in this SDE. One needs to � specify ε , C , G , D 1 , D 2 imposed by the chosen turbulence closure � compute ∇ x � P � � introduce boundary conditions 36

  21. PDF description of flow via the associated Fokker Planck Equation P (( X t , U t , ψ t ) ∈ dxdvd φ ) := ρ Lagr. ( t ; x , v , φ ) dxdvd φ . ∂ t ρ Lagr. + ( v · ∇ x ρ Lagr. ) = 1 ̺ ( ∇ x � P � ( t , x ) · ∇ v ρ Lagr. ) − ∇ v · ( G ( t , x )( � U � ( t , x ) − v ) ρ Lagr. ) + 1 2 C ( t , x ) ε ( t , x ) △ v ρ Lagr. − ∂ φ ( D 1 ( t , x , φ ) ρ Lagr. ) + 1 2 ∂ 2 φφ ( D 2 ( t , x , φ ) ρ Lagr. ) � Integrating w.r.t. dvd φ gives the equation for the conservation of mass, � ̺ ( t , x ) = ρ Lagr. ( t ; x , v , φ ) dvd φ �� � � � v ρ Lagr. dvd φ � ∂ t ρ Lagr. dvd φ + ∇ x · ρ Lagr. dvd φ = 0 ⇐ ⇒ ∂ t ̺ + ∇ x · ( ̺ � U � ) = 0 . ρ Lagr. dvd φ � Integrating w.r.t. vdvd φ gives the RANS equation. � Integrating w.r.t. vv t dvd φ gives the Reynolds stress closure, according to C , G , D 1 , D 2 . 37

  22. The Reynolds tensor models in SLM Simple Langevin Model see e.g [Pope 95, Minier Peirano 01, Pope 03] Durbin Speziale 94, Pope 94, Dreeben Pope 98,Durbin 93, Waclawczyk Pozorski Minier 04,  with U t = ( u ( i ) i ( t ) = u ( i ) − � u ( i ) t , i = 1 , 2 , 3 ) and u ′ dX t = U t dt , t �  t  �� �� � � du ( i ) u ( j ) C 0 ε ( t , X t ) dB ( i ) − � u ( j ) � = − ∂ x i � P � ( t , X t ) dt + G ij ( t , X t ) dt +  t t t  j tke δ ij + C 2 ∂ � u ( i ) � ε G ij = − C R C 0 ε = 2 3 ( C R ε + C 2 P − ε ) , ∂ x j 2 P = 1 2 ( P 11 + P 22 + P 33 ) , the turbulent production term is computed with � � k � ∂ � u ( i ) � k � ∂ � u ( j ) � � � u ′ i u ′ + � u ′ j u ′ P ij := − . ∂ x k ∂ x k k ε is closed with mixing length or turbulent viscosity parametrizations. 38

  23. The Reynolds tensor models in SLM Corresponding Reynolds Stress Equation : 3 ∂ t � u ′ i u ′ � U � · ∇ x � u ′ i u ′ � ∂ x k � u ′ i u ′ j u ′ � � j � + j � + k � = k = 1 � 1 � ε 3 2 + 3 � � � � u ′ i u ′ k � ∂ x k � U ( i ) � + � u ′ j u ′ k � ∂ x k � U ( j ) � tke � u ′ i u ′ − − 2 4 C 0 j � + C 0 εδ ij k = 1 versus Exact Reynolds Stress Equation : 3 ∂ t � u ′ i u ′ � U � · ∇ x � u ′ i u ′ � ∂ x k � u ′ i u ′ j u ′ � � j � + j � + k � = k = 1 3 3 − 1 � � j ∂ x i p ′ + u ′ � � u ′ i u ′ k � ∂ x k � U ( i ) � + � u ′ j u ′ k � ∂ x k � U ( j ) � ̺ � u ′ i ∂ x j p ′ � + ν � � ∂ x k u ′ i ∂ x k u ′ − j � k = 1 k = 1 � 3 j � = 2 � ∂ x l u ′ i ∂ x l u ′ The dissipation tensor is reduced to the relation ν 3 ε E δ ij l = 1 The turbulent pressure terms are closed according to the Rotta’s second order closure model : � � ε � � 1 1 + 3 j � + 2 � p ′ ∂ x j u ′ i � + � p ′ ∂ x i u ′ tke � u ′ i u ′ j � = − 3 C R εδ ij , 2 C 0 ̺ � � 1 + 3 for 2 C 0 denoting the prescribed Rotta’s constant. 39

  24. Reynolds tensor models in SLM IP model for anisotropic turbulence see e.g [Pope 95, Minier Peirano 01, Pope 03, Durbin Speziale 94, Pope 94, Dreeben Pope 98]Durbin 93, Waclawczyk Pozorski Minier 04,  with U t = ( u ( i ) i ( t ) = u ( i ) − � u ( i ) t , i = 1 , 2 , 3 ) and u ′ dX t = U t dt , t �  t  �� �� � � du ( i ) u ( j ) C 0 ε ( t , X t ) dB ( i ) − � u ( j ) � = − ∂ x i � P � ( t , X t ) dt + G ij ( t , X t ) dt +  t t t  j tke δ ij + C 2 ∂ � u ( i ) � ε G ij = − C R C 0 ε = 2 3 ( C R ε + C 2 P − ε ) , ∂ x j 2 P = 1 2 ( P 11 + P 22 + P 33 ) , the turbulent production term is computed with � � k � ∂ � u ( i ) � k � ∂ � u ( j ) � � � u ′ i u ′ + � u ′ j u ′ P ij := − . ∂ x k ∂ x k k ε is closed with mixing length or turbulent viscosity parametrizations. 40

  25. Reynolds tensor models in SLM see e.g [Pope 95, Minier Peirano 01, Pope 03, Durbin Speziale 94, Pope 94, Dreeben Pope 98, Durbin 93, Waclawczyk Pozorski Minier 04]  with U t = ( u ( i ) i ( t ) = u ( i ) − � u ( i ) t , i = 1 , 2 , 3 ) and u ′  dX t = U t dt , t �    t  � � � � du ( i ) u ( j ) C 0 ε ( t , X t ) dB ( i ) − � u ( j ) �  ( t , X t ) dt +  = − ∂ x i � P � ( t , X t ) dt + G ij   t t t j ε G ij = − γ ij − 1 C 0 ε = 2 3 ( γ ij ) � u ′ i u ′ tke δ ij j � 2 homogeneous γ ij = ( 1 − α tke ) γ wall ij + α tke γ ij L 2 ∇ 2 α − α = − 1 Elliptic blending coefficent α solves: tke ( L length scale), and ∂ � u ( i ) � 2 ( C R − 1 ) ε = − 1 homogeneous − γ tke δ ij + C 2 ij ∂ x j = − 7 . 5 ε − γ wall tken i n j ij 41 where n is the wall-normal unit vector.

  26. Dissipation closure in the atmospheric boundary layer collaboration with P . Drobinski (IPSL) With notation U t = ( u t , v t , w t ) and also U t − � U � ( t , X t ) = ( u ′ t , v ′ t , w ′ t ) � Closure relation classically used in meteorology (see e.g. Cuxart et al. 2000) : tke 3 / 2 ( t , x , y , z ) ε ( t , x , y , z ) = C ε . ℓ m ( z ) � Relation based on turbulent viscosity parametrization (O’Brien 70, Heinz 97) � � u ′ w ′ � 2 + � v ′ w ′ � 2 ν turb = �� � 2 + � � 2 ∂ z � u � ∂ z � v � ε = tke 2 1 1 � 1 � ν param 2 + 3 3 4 C 0 turb ℓ m ( z ) = κ z 1 [ 0 , z c ] + κ z c 1 [ z c , 750 ] 42

  27. Wall-boundary condition The velocity is reflected at level z mirror (Drebeen Pope 98, Minier Cell center Cells • { z = zc } Pozorski 99) U in Outward particle • w in = − w out Inward normal u in = u out − 2 � u ′ w ′ � { z = z mirror } � w ′ 2 � w out , U out • Mirror particle • v in = v out − 2 � v ′ w ′ � { z = z 0 } � w ′ 2 � w out . { z = 0 } Ground We compute � u ′ w ′ � and � v ′ w ′ � using the MESO-NH-style formula u 2 u 2 ∗ � u � ∗ � v � � u ′ w ′ � ( t , x , y ) = − � v ′ w ′ � ( t , x , y ) = − � � u � 2 + � v � 2 ( t , x , y ) , � � u � 2 + � v � 2 ( t , x , y ) � � u � 2 ( t , x c , y c , z c ) + � v � 2 ( t , x c , y c , z c ) with u ∗ ( t , x c , y c ) = κ log ( z c / z 0 ) (see e.g. [Schmid and Schumann 89, Lafore et al 98, Carlotti 02]) 43

  28. Validation in neutral atmosphere collaboration with P . Drobinski (IPSL) Comparison with a LES method [MESO-NH use case in Drobinski et al. 2007]. Computational domain : 3000 m × 1000 m × 750 m Renormalized variances and covariances � u ′ u ′ � , � v ′ v ′ � , � w ′ w ′ � , � u ′ w ′ � , � v ′ w ′ � , � u ′ v ′ � , 44

  29. Numerical method : stochastic particle algorithm The PIC method The computational space is divided in cells We use a Particles in cell (PIC) technique to compute the Eulerian fields (mean fields) � U ( i ) � ( t , x ) , � U ( i ) � U ( j ) ( t , x ) at the center of each cell : We introduce N p particles ( X k , N p , U k , N p ) in t t D . Each cell C contains N pc particles by constant mass density constraint. K ( ., x ) = 1 ( ., C ( x )) . N p � � � 1 N p � � 1 U k , N p K ( X k , N p K ( X k , N p � F ( U ) � ( t , x ) ≃ F , x ) , x ) t t t N p N p k = 1 k = 1 N p � K ( X k , N p , x ) = N pc t k = 1 45

  30. The interacting particles system For j = 1 , . . . , N p  d X j , N p = U j , N p  dt ,  t t   = − 1 ∂ � P �  d U ( i ) , j , N p ( t , X j , N p ) dt t t ̺ ∂ x i   + D U ( t , X j , N p ) dt + B U ( t , X j , N p ) dW ( i ) , j , N p    t t t + jump terms for boundary condition , i ∈ { 1 , 2 , 3 } . • The coefficients D U , B U depend on the particles approximations of � U � , � U ( i ) U ( j ) � , and their derivatives. ∂ � P � • − 1 ( t , X j , N p ) ensures that ∇ · � U � = 0 and maintains the mass density t ̺ ∂ x i constant. ∇ 2 � P � = − ∂ 2 � U ( i ) U ( j ) � ∂ x i ∂ x j 46

  31. Algorithm Fractional step method : n ∆ t − → ( n + 1 )∆ t (Pope 85, Minier Pozorski 99) Step 1 : For n ∆ t ≤ t ≤ ( n + 1 )∆ t , ( X j , N p n ∆ t , U ( i ) , j , N p , j = 1 , . . . , N p ) , given n ∆ t  X j , N p U j , N p d � = � dt ,   t t   ∂ � P � U ( i ) , j , N p X j , N p d � ( t , � = − 1 ) dt t t ̺ ∂ x i  U ( t , X j , N p U ( t , X j , N p ) dW ( i ) , j , N p  + D � ) dt + B �   t t t + jump terms , i ∈ { 1 , 2 , 3 } X j , N p → X j , N p Step 2: Correction of the particles positions � ( n + 1 )∆ t − ( n + 1 )∆ t that maintains the (discrete) uniform distribution, by solving a (discrete) optimal transport problem. U j , N p → U j , N p Step 3: Correction of the particles velocity � ( n + 1 )∆ t − ( n + 1 )∆ t such that ∇ · � U � ( n + 1 )∆ t = 0 , as in Chorin-Temam projection method : � ∆ t ∇ · � � 1 △ p = U � ( n + 1 )∆ t , x ∈ D , ∂ p ∂ n D = 0 , on ∂ D U j , N p U j , N p ( n + 1 )∆ t − ∆ t ∇ p ( X j , N p ( n + 1 )∆ t = � ( n + 1 )∆ t ) and � U � ( n + 1 )∆ t = � � U � ( n + 1 )∆ t − ∆ t ∇ p . 47

  32. Turbine wake effects (see e.g. Hansen 08, R´ ethor´ e, Sørensen, Bechmann 09, Port´ e-Agel et al 10) 48

  33. Actuator disc methods in the Lagrangian setting d X t = U t dt � � − 1 d U t = ρ ∇ x � P � ( t , X t ) dt � � − G ( t , X t ) U t − � U � ( t , X t ) dt + C ( t , X t ) dW t + f ( t , X t , U t ) dt + f nacelle ( t , X t , U t ) dt + f mast ( t , X t , U t ) dt . f ( t , X t , U t ) the body forces that the blades exert on the flow. Supplementary terms f nacelle ( t , X t , U t ) and f mast ( t , X t , U t ) represent the impact of the mill nacelle and mast. (B., Espina, Morice, Paris, Rousseau 14) 49

  34. Forces Non rotating, uniformly loaded actuator disc model: knowing the axial induction factor a � � f x ( t , X t , U t ) = − 1 2 a � 2 e x . � E [ u t | X t ∈ C ] 1 − a ∆ x Rotating actuator disc : N b 4 π r ∆ xU relat ( X t , U t ) 2 c ( r ( X t )) ( C L ( α ) cos ( φ ) + C D ( α ) sin ( φ )) ( X t , U t ) , f x ( t , X t , U t ) = − 1 { X t ∈C} N b 4 π r ∆ xU relat ( X t , U t ) 2 c ( r ( X t )) ( C L ( α ) sin ( φ ) − C D ( α ) cos ( φ )) ( X t , U t ) . f θ ( t , X t , U t ) = 1 { X t ∈C} 50

  35. Validation of with wind tunnel measures Figure 1: Comparison of vertical profiles of � u � at different downstream positions x from the turbine (-1, 2, 5, 7 and 10 diameters respectively). The profiles are centred to the hub y position. The blue curve represents the wind tunnel measures, the red curve represents SDM simulation with the Rotating Actuator Disc mill model. 51

  36. Validation with wind tunnel measures Figure 2: Turbulence intensity with SDM, using the inflow mean velocity U hub at the hub � height given in Wu-Porte Agel 2011: I = 2 / 3 tke / U hub tke isosurface, for a (3 blades) actuator line model. 52

  37. Figure 3: Domain for the wind tunnel scale simulations and numerical parameters 53

  38. Wind farm evaluation 54

  39. Wind farm evaluation 55

  40. Outline � Stochastic particle methods for McKean SDEs � Lagrangian viewpoint in turbulence modeling Applications Atmospheric boundary layer simulation Wind farm simulation � Well posedness results of SLM (toy models) boundary condition mass constraint � Numerical analysis for SLM (toy models) 56

  41. Well posedness of a simplified Langevin model Consider  � t  X t = X 0 + 0 U s ds , � t � t U t = U 0 + 0 B [ X s , U s ; ρ s ] ds + 0 σ ( s , X s , U s ) dW s ,  P (( X t , U t ) ∈ dxdu ) = ρ t ( x , u ) dxdu , t ∈ [ 0 , T ] , �  � R d b ( u , v ) γ ( x , v ) dv  � , if R d γ ( x , v ) dv � = 0 , where B [ x , u ; γ ] = R d γ ( x , v ) dv  0 , elsewhere If b : R 2 d → R d is bounded, by the Girsanov theorem, any weak solution ( X t , U t , t ∈ [ 0 , T ]) has a strictly positive density ( ρ t ( x , u ) , t ∈ [ 0 , T ]) , E [ b ( u , U t ) | X t = x ] = B [ x , u ; ρ t ] . and 57

  42. Well posedness of a simplified Langevin model ◮ σ is bounded and strongly elliptic: for a := σσ ∗ , there exists λ > 0 s.t. for all t ∈ ( 0 , T ] , x , u , v ∈ R d , | v | 2 � d a ( i , j ) ( t , x , u ) v i v j ≤ λ | v | 2 . ≤ λ i , j = 1 ◮ For all 1 ≤ i , j ≤ d , a ( i , j ) is H¨ older continuous in the following sense: α ∈ ( 0 , 1 ] | a ( i , j ) ( t , x , u ) − a ( i , j ) ( s , y , v ) | α 2 + | x − y − v ( t − s ) | α + | u − v | α ) . ≤ C ( | t − s | Theorem Bossy, Jabir, Talay 11 � � Let b ∈ C b ( R 2 d , R d ) , let ( X 0 , U 0 ) s.t. E P � X 0 � R d + � U 0 � 2 < + ∞ . On the R d previous hypotheses on the velocity diffusion coefficient σ , the system has a unique weak solution. 58

  43. The smoothed system in the space variables � t � X ε 0 U ε t = X 0 + s ds , � t � t U ε 0 B ε [ X ε s , U ε s ; ρ ε t = U 0 + s ] ds + 0 σ ( s , X s , U s ) dW s , where L aw ( X ε t , U ε t ) = ρ ε t ( x , u ) dxdu , and ∀ non–negative γ in L 1 ( R 2 d ) , � R 2 d b ( v , u ) φ ε ( x − y ) γ ( y , v ) dy dv � B ε [ x , u ; γ ] = R 2 d φ ε ( x − y ) γ ( y , v ) dy dv + ε , for a given regularization φ ε ∈ C 1 c ( R d ) of the Dirac mass in R d .  d X ε t = U ε t dt ,   �   �  E [ b ( v , U ε t ) φ ε ( x − X ε � t t )]  � x = X ε t , v = U ε d U ε σ ( s , X ε s , U ε � t = t dt + s ) dW s , (10) �   E [ φ ε ( x − X ε t )] + ε � 0    x = X ε  t t ∈ [ 0 , T ] . 59

  44. Existence of the smoothed system On (Ω , F , ( F t ; t ∈ [ 0 , T ]) , Q ) , � � W i independent Brownian motions in R d , t ; t ∈ [ 0 , T ] ; N { ( X i 0 , U i 0 ); i ∈ N } i.i.d, independent of the Brownian family, such that � � ( X 1 0 , U 1 Q 0 ) ∈ dx du = ρ 0 ( x , u ) dx du .  � t X i ,ε, N 0 U i ,ε, N  = X i 0 + ds ,  t  s   � N   b ( U i ,ε, N , U j ,ε, N ) φ ε ( X i ,ε, N − X j ,ε, N  ) � t s s s s j = 1 , j � = i U i ,ε, N  ds + W i = U i � � 0 + t ,  � N  t  φ ε ( X i ,ε, N − X j ,ε, N  ) + ε 0  s s j = 1 , j � = i   i = 1 , . . . , N . � � � N The sequence { π N = L aw 1 i = 1 δ { X i ,ε, N , U i ,ε, N , W i } , N ∈ N } is tight on N P ( C ([ 0 , T ]; R 3 d )) . The sequence {L aw ( X i ,ε, N , U i ,ε, N , 1 ≤ i ≤ N ) , N } is L aw ( X ε , U ε ) –chaotic. 60

  45. Convergence ε → 0 , uniqueness results The linear Langevin system (I) For ( y , v ) ∈ R 2 d , consider ( Y s , y , v , V s , v t ; t ≥ s ≥ 0 ) solution of the Langevin t equation � t   Y s , y , v V s , y , v  = y + d θ,  t θ s (11) � t   V s , y , v σ ( θ, Y s , y , v , V s , y , v  = v + ) dW θ . t θ s Proposition There exists a unique weak solution to (11). In addition this solution admits a density Γ( s , y , v ; t , x , u ) w.r.t. Lebesgue measure such that: (i) For all ( t , x , u ) ∈ ( 0 , T ] × R 2 d , 1 ≤ i , j ≤ d , the derivatives ∂ v i Γ( s , y , v ; t , x , u ) exist and are continuous for all ( s , y , v ) ∈ R × R 2 d such that ( s , y , v ) � = ( t , x , u ) . (Ultraparabolic operators of Kolmogorov type (Di Francesco&Pascucci 05)) 61

  46. Convergence ε → 0 , uniqueness results The linear Langevin system (II) Proposition (following) (ii) Let f ∈ C b ( R d ) . The function G t , f defined by G t , f ( s , y , v ) = E ( f ( Y s , y , v , V s , y , v )) , t t is the unique classical solution of the Cauchy problem:  ∂ s G t , f + A ( s , G t , f ) = 0 on [ 0 , t ) × R 2 d ,  s → t − G t , f ( s , y , v ) = f ( y , v ) ∀ ( y , v ) ∈ R 2 d , lim  � d A ( ψ )( s , y , v ) = ( u · ∇ x ψ ( s , y , v )) + 1 ( σσ ∗ ) ( i , j ) ( s , x , v ) ∂ 2 v i , v j ψ ( s , y , v ) 2 i , j = 1 (iii) There exists C > 0 depending only on T and λ such that � C R d |∇ v Γ( s , y , v ; t , x , u ) | dx du ≤ √ t − s , ∀ 0 ≤ s < t ≤ T . sup ( y , v ) ∈ R 2 d 62

  47. Convergence ε → 0 , uniqueness results t , s ) is the adjoint of the transition semigroup of ( Y s , y , v , V s , y , v ( S ∗ ) , t t Define S ′ t , s : L 1 ( R 2 d ; R d ) → L 1 ( R 2 d ; R ) by � S ′ t , s ( h )( x , u ) = R 2 d ( ∇ v Γ( s , y , v ; t , x , u ) · h ( y , v )) dy dv . Any solution of the (smoothed) Lagrangian model has a positive marginal density satisfying the mild equation in L 1 ( R 2 d ) � t S ∗ S ′ ρ t = t , 0 ( µ 0 ) + t , s ( ρ s ( · ) B [ · ; ρ s ]) ds 0 � t ρ ǫ S ∗ S ′ t , s ( ρ ǫ s ( · ) B ǫ [ · ; ρ ǫ = t , 0 ( µ 0 ) + s ]) ds t 0 For all t ∈ ( 0 , T ] , h , δ ∈ R d , it holds that � R 2 d | ρ ǫ t ( x + h , u + δ ) − ρ ǫ t ( x , u ) | dx du = 0 . | h | , | δ |→ 0 lim sup lim ǫ → 0 + 63

  48. Definition - : The non linear Martingale Problem ( MP ε ) : A probability P ε on C ([ 0 , T ]; R 2 d ) is a weak solution of (10), or equivalently, a solution to the martingale problem ( MP ε ) if ( i ) P ε ◦ ( x 0 , u 0 ) − 1 = µ 0 . ( ii ) For all t ∈ ( 0 , T ] , the time marginal P ε ◦ ( x t , u t ) − 1 has a density ρ ǫ t w.r.t. Lebesgue measure on R 2 d . ( iii ) For all f ∈ C 2 b ( R 2 d ) , the process � t A ǫ f ( x t , u t ) − f ( x 0 , u 0 ) − s f ( s , x s , u s ) ds (12) ρ ǫ 0 is a P ε –martingale • Any limit point π ∞ of { π N , N ∈ N } has a full measure on the set of solutions of ( MP ε ) . • Consequently: Any subsequence of { π N , N ∈ N } converges to δ P ε or � � X i ,ε, N , U i ,ε, N , W i , i = 1 , . . . , N equivalently L aw is P ε -chaotic. 64

  49. The limit ε → 0 Lemma : The limit Martingale Problem ( MP ) There exists P on C ([ 0 , T ]; R 2 d ) such that P is a solution to the martingale problem ( MP ) : ( i ) P ◦ ( x 0 , u 0 ) − 1 = µ 0 . ( ii ) For all t ∈ ( 0 , T ] , the time marginal P ◦ ( x t , u t ) − 1 has a positive density ρ t w.r.t. Lebesgue measure on R 2 d . ( iii ) For all f ∈ C 2 b ( R 2 d ) , the process � t f ( x t , u t ) − f ( x 0 , u 0 ) − A ρ s f ( s , x s , u s ) ds is a ( MP ) –martingale. 0 Main difficulty : for any bounded F s -measurable r.v Φ , � � � t ( B ε [ x θ , u θ ; ρ ε Φ θ ] · ∇ u f ( x θ , u θ )) d θ ε → 0 + E P ε lim s � � t � = E P Φ ( B [ x θ , u θ ; ρ θ ] · ∇ u f ( x θ , u θ )) d θ . s 65

  50. Compute the wind at a finer scale Downscaling method for local wind assessment, based on a stochastic Lagrangian approach 66

  51. The downscaling problem France 44 ◦ N 41 ◦ N Mer M´ editerran´ ee 0 ◦ 4 ◦ E 8 ◦ E Comparison WRF and SDM on flat terrain; horizontal visualization of the u component of the wind at the altitude 400 m ; time is T 0 + 4 days. 67

  52. Numerical framework Our computational domain D corresponds to a given set of cell of a NWP solver. Top and lateral (in red) : mean-Dirichlet boundary condition ∀ x ∈ ∂ D , � U � ( t , x ) = V ext ( t , x ) where V ext is the WRF forcing. Bottom boundary condition (in blue) necessities to introduce a wall law model. 68

  53. The boundary condition in the PDF approach ∀ x ∈ ∂ D , � U � ( t , x ) = V ext ( t , x ) . � R d v ρ ℓ ( t , x , v ) dv � R d ρ ℓ ( t , x , v ) dv = V ext ( t , x ) . � � R d v ρ ℓ ( t , x , v , ) dv = R d V ext ( t , x ) ρ ℓ ( t , x , v ) dv � � ⇔ R d v ρ ℓ ( t , x , v , ) dv = R d v ρ ℓ ( t , x , v + 2 ( V ext ( t , x ) − v )) dv ⇑ ρ ℓ ( t , x , v , ) = ρ ℓ ( t , x , v + 2 ( V ext ( t , x ) − v )) , ∀ v ∈ R d leads to specular boundary condition with jump on ∂ D for ρ ℓ ... 69

  54. Stochastic Downscaling Method (SDM) Let D be an open set of R 3 , and a velocity V ext given at ∂ D : � t X t = X 0 + U s ds , 0 � t � � 1 � ε ( s , X s ) � − 1 2 + 3 d U t = U 0 + ̺ ∇� P � ( s , X s ) − tke ( s , X s ) ( U s − � U � ( s , X s )) 4 C 0 ds 0 � t � � + C 0 ε ( s , X s ) dW s + 2 ( V ext ( s , X s ) − U s − ) 1 { X s ∈ ∂ D} . 0 0 < s ≤ t The jump term should ensure that � U � ( t , x ) = V ext ( t , x ) , ∀ x ∈ ∂ D . Generic nonlinear SDE : � t X t = X 0 + 0 U s ds , � � t � t U t = U 0 + 0 B [ X s ; ρ ( s )] ds + 0 Σ[ X s ; ρ ( s )] dW s − 2 ( V ext − U s − ) 1 { X s ∈ ∂ D} , 0 < s ≤ t ρ ( t ) is the probability density of ( X t , U t ) for all t ∈ ( 0 , T ] , � � R d b ( v ) f ( x , u ) du R d σ ( u ) f ( x , u ) du � � � � B [ x ; f ] = R d f ( x , u ) du � = 0 } , Σ[ x ; f ] = R d f ( x , u ) du � = 0 } . 1 { 1 { R d f ( x , u ) du R d f ( x , u ) du 70

  55. Well-posedness of the SLM with the no-permeability boundary condition ( � U � ( t , x ) · n D ( x )) = 0  � t X t = X 0 + 0 U s ds ,   � � t  U t = U 0 + 0 B [ X s ; ρ ( s )] ds + σ W t − 2 ( U s − · n D ( X s )) n D ( X s ) 1 { X s ∈ ∂ D} ,   0 < s ≤ t  ρ ( t ) is the probability density of ( X t , U t ) for all t ∈ ( 0 , T ] , Q T = ( 0 , T ) × D × R d Σ T = ( 0 , T ) × ∂ D × R d and Definition - Trace of the density along Σ T γ ( ρ ) : Σ T → R is the trace of ( ρ ( t ); t ∈ [ 0 , T ]) along Σ T if it is nonnegative and � � satisfies, for all t in ( 0 , T ] , f in C ∞ : Q t c � ( u · n D ( x )) γ ( ρ )( s , x , u ) f ( s , x , u ) ds d σ ∂ D ( x ) du Σ t ∂ s f + u · ∇ x f + B [ · ; ρ · ] · ∇ u f + σ 2 � � � � = D× R d ( f ( 0 ) ρ ( 0 ) − f ( t ) ρ ( t )) + 2 △ u f ρ ( s ) Q t and, for dt ⊗ d σ ∂ D a.e. ( t , x ) in ( 0 , T ) × ∂ D , � � R d | ( u · n D ( x )) | γ ( ρ )( t , x , u ) du < + ∞ , R d γ ( ρ )( t , x , u ) du > 0 . 71

  56. Theorem [B. and Jabir 14, 15] Under ( H ), there exists a unique solution in law to the SLM with jumps in M ( C ([ 0 , T ]; D ) × D ([ 0 , T ]; R d )) , and this law admits time marginal densities ρ t = P ◦ ( x ( t ) , u ( t )) − 1 in L 2 ( ω ; D × R d ) , for all t ∈ [ 0 , T ] , that solves in V 1 ( ω ; Q T )  ∂ t ρ ( t , x , u ) + u · ∇ x ρ ( t , x , u ) − σ 2   2 △ u ρ ( t , x , u ) = − ( B [ x ; ρ ( t )] · ∇ u ρ ( t , x , u )) in Q T   ρ ( 0 , x , u ) = ρ 0 ( x , u ) in D × R d ,     γ − ( ρ )( t , x , u ) = γ + ( ρ )( t , x , u − 2 ( u · n D ( x )) n D ( x )) in Σ − T , The trace γ ( ρ ) (in the sense of the previous definition) satisfies the no-permeability boundary condition � R d ( u · n D ( x )) γ ( ρ )( t , x , u ) du � E { ( U t · n D ( X t )) | X t = x } = = 0 , dt ⊗ d σ ∂ D R d γ ( ρ )( t , x , u ) du -a.e. on ( 0 , T ) × ∂ D . The associated smoothed N -particles system propagates chaos. 72

  57. The hypotheses ( H ) ( H Langevin ) for the construction of the linear Langevin process ( H MVFP ) for the well-posedness of the Vlasov-Fokker-Planck equation ◮ ( H Langevin )-( i ) ( X 0 , U 0 ) is distributed according to the initial law µ 0 having its � � | x | 2 + | u | 2 � support in D × R d and such that µ 0 ( dx , du ) < + ∞ . D× R d ◮ ( H Langevin )-( ii ) The boundary ∂ D is a compact C 3 submanifold of R d . ◮ ( H MVFP )-( i ) b : R d → R d is a bounded continuous function. ◮ ( H MVFP )-( ii ) The initial law µ 0 has a density ρ 0 in the weighted space L 2 ( ω, D × R d ) with ω ( u ) := ( 1 + | u | 2 ) α for some α > d + 3 . 2 ◮ ( H MVFP )-( iii ) There exist two measurable functions P 0 , P 0 : R + − → R + such that 0 < P 0 ( | u | ) ≤ ρ 0 ( x , u ) ≤ P 0 ( | u | ) , a.e. on D × R d ; � 2 and R d ( 1 + | u | ) ω ( u ) P 0 ( | u | ) du < + ∞ . 73

  58. Propagation of chaos With independent copies { ( X i 0 , U i 0 , ( W i )) , i = 1 , . . . , N } of ( X 0 , U 0 , ( W )) � t   X i ,ǫ, N = X i U i ,ǫ, N  0 + ds ,  t  s   0  � t  U i ,ǫ, N t + K i ,ǫ, N = U i B ǫ [ X i µ ǫ, N ] ds + σ W i 0 + s ; ¯ , t t s   0  � �  �   ) 1 � � , i = 1 , . . . , N . K i ,ǫ, N U i ,ǫ, N · n D ( X i ,ǫ, N n D ( X i ,ǫ, N  = − 2 )  X i ,ǫ, N t s − s s ∈ ∂ D s 0 < s ≤ t � � N D× R d b ( v ) β ǫ ( y ) φ ǫ ( x − y ) γ ( dy , dv ) µ ǫ, N = 1 � where ¯ δ ( X i ,ǫ, N ) , B ǫ [ x ; γ ] = , U i ,ǫ, N t N D× R d β ǫ ( y ) φ ǫ ( x − y ) γ ( dy , dv ) + ǫ t t i = 1 Theorem Let P be the law on E of ( X , U , K ) , and let P ǫ, N be the law of { ( X i ,ǫ, N , U i ,ǫ, N , K i ,ǫ, N ); 1 ≤ i ≤ N } . Then P ǫ, N is P -chaotic; namely, for all { F l , 1 ≤ l ≤ k } , k ≥ 2 , with F i ∈ C b ( C ([ 0 , T ]; D ) × D ([ 0 , T ]; R d ) × D ([ 0 , T ]; R d )) , � k N → + ∞ � F 1 ⊗ F 2 ⊗ · · · ⊗ F k ⊗ 1 ⊗ 1 ⊗ · · · , P ǫ, N � = lim lim � F l , P� . ǫ → 0 + l = 1 74

  59. Incompressible stochastic Lagrangian model in the torus B., Fontbona, Jabin and Jabir 2013 Goal : well-posedness for the following process in T d × R d : � t X t = [ X 0 + U s ds ] modulo 1 0 � t � � β ( � U s � − α U s ) − ∇ P ( s , X s ) U t = U 0 + ds + σ W t . ρ ( s , X s ) 1 { ρ ( s , X s ) > 0 } 0 with L aw ( X t ) = ρ ( t , x ) dx , � U t � = E ( U t | X t ) and � � � d ∂ 2 E ( U i t U j ( t , x ) ∈ R + × T d . − △ x P ( t , x ) = t | X t = x ) ρ ( t , x ) , ij i , j = 1 75

  60. Incompressible stochastic Lagrangian model in the torus Lemma Assume that the previous nonlinear SDE has a solution ( X , U ) such that � T � T � E | U t | 2 < ∞ ∀ t ∈ [ 0 , T ] , | U s | 2 ds < ∞ and E T d |∇ P ( s , x ) | dxds < ∞ . 0 0 Assume also that for all 1 − periodic function ϕ : R d → R of class C 1 we have E ( ∇ ϕ ( X 0 ) · U 0 ) = 0 . Then, a) E ( ∇ ϕ ( X t ) · U t ) = 0 for all t ∈ [ 0 , T ] , b) the process ( X t , t ∈ [ 0 , T ]) is stationary. Existence result for the Vlasov Fokker Planck equation ? 76

  61. Local existence of analytical solutions  ∂ t f ( t , x , u ) + u · ∇ x f ( t , x , u ) = σ 2   2 △ u f ( t , x , u ) + β d f ( t , x , u ) + β u · ∇ u f ( t , x , u )     � � �    = 0 on ( 0 , T ] × T d × R d ,  + ∇ u f ( t , x , u ) · ∇ P ( t , x ) − βα R d vf ( t , x , v ) dv   f ( t = 0 ) = f 0 on T d × R d ,     �     R d v i v j f ( t , x , v ) dv , on [ 0 , T ] × T d , △ P ( t , x ) = − ∂ x i x j Theorem (d=1) Let ¯ λ > 0 and s ≥ d + 2 be an even integer. There exists κ 0 = κ 0 (¯ λ, s ) and λ, s ) ≥ 0 s.t. if f 0 : T d × R d → R of class C ∞ and T > 0 satisfy: r �→ κ 1 ( r , ¯ ◮ � � R d f 0 ( x , u ) du = 1 and ∇ x · R d uf 0 ( x , u ) du = 0 for all x ∈ T , s u f 0 � ∞ ≤ C 0 ( | k | + m )!( | l | + n )! ◮ � ( 1 + | u | 2 ) 2 D l x D k for some n , m ∈ N , all pair of | k | + | l | λ multiindexes k , l ∈ N N and a constant C 0 < κ 0 (¯ λ, s ) , and ◮ T < κ 1 ( C 0 , ¯ λ, s ) , then, a solution f of class C 1 , ∞ exists. 77

  62. Outline � Stochastic particle methods for McKean SDEs � Lagrangian viewpoint in turbulence modeling Applications Atmospheric boundary layer simulation Wind farm simulation � Well posedness results of SLM (toy models) boundary condition mass constraint � Numerical analysis for SLM (toy models) 78

  63. We simplify again the fluid particle model Goal : analyze the rate of convergence � t   X t = X 0 + U s ds   0 � t   U t = U 0 + B [ X s ; ρ s ] ds + W t , ρ t = L ( X t , U t ) , for all t ≤ T  0 � R d b ( v ) γ ( x , v ) dv R d × L 1 ( R d × R d ) ∋ ( x , γ ) �→ B [ x ; γ ] = � 1 { � R d γ ( x , v ) dv > 0 } R d γ ( x , v ) dv � ( t , x ) �→ B [ x ; ρ ( t )] = E [ b ( U t ) � X t = x ] The smoothed process ( X ǫ , U ǫ , ǫ > 0 ) converges in law to ( X , U ) , by substituting the conditional expectation B [ x ; ρ t ] with the kernel regression estimate [Bossy Jabir Talay 2011] � R d × R d b ( v ) K ǫ ( x − y ) ρ ( dy , dv ) B ǫ [ x ; ρ ] := , � R d × R d K ǫ ( x − y ) ρ ( dy , dv ) where K ǫ ( x ) := 1 ǫ d K ( x ǫ ) and K is a kernel function. � t  X ǫ U ǫ  t = X 0 + s ds   0 � t  U ǫ B ǫ [ X ǫ s , ρ ǫ ρ ǫ t = L ( X ǫ t , U ǫ  t = U 0 + s ] ds + W t , t ) , for all t ≤ T .  0 79

  64. We simplify the fluid particle model Goal : analyze the rate of convergence � t  � �  X t = X 0 + U s ds mod 1   0 � t   U t = U 0 + B [ X s ; ρ s ] ds + W t , ρ t = L ( X t , U t ) , for all t ≤ T  0 � R d b ( v ) γ ( x , v ) dv T × L 1 ( T × R d ) ∋ ( x , γ ) �→ B [ x ; γ ] = � 1 { � R d γ ( x , v ) dv > 0 } R d γ ( x , v ) dv � ( t , x ) �→ B [ x ; ρ ( t )] = E [ b ( U t ) � X t = x ] The smoothed process ( X ǫ , U ǫ , ǫ > 0 ) converges in law to ( X , U ) , by substituting the conditional expectation B [ x ; ρ t ] with the kernel regression estimate � T × R d b ( v ) K ǫ ( x − y ) ρ ( dy , dv ) B ǫ [ x ; ρ ] := , � T × R d K ǫ ( x − y ) ρ ( dy , dv ) where K ǫ ( x ) := 1 ǫ d K ( x ǫ ) and K is a kernel function. � t  � � X ǫ U ǫ  t = X 0 + s ds mod 1   0 � t  U ǫ B ǫ [ X ǫ s , ρ ǫ ρ ǫ t = L ( X ǫ t , U ǫ  t = U 0 + s ] ds + W t , t ) , for all t ≤ T .  0 80

  65. Numerical analysis of a non degenerate toy model (d=1) � t Y t = Y 0 + b [ Y s ; ρ s ] ds + σ w t , ρ t = L ( Y t ) . 0 Assume b symmetric b ( x , y ) = b ( x − y ) . b [ x , ρ t ] = E b ( x − Y t ) . Introduce N particles: Let ( w i , i = 1 , . . . , N ) N -Brownian motion, independent of the i.i.d. ( Y i 0 , i = 1 , . . . , N ) with law ρ 0 . We consider � t N N 1 � t = 1 � Y i , N = Y i b ( Y i , N − Y j , N s ) ds + σ w i µ N 0 + t , δ Y i , N . t s N N t 0 j = 1 i = 1 Lemma Assume that there exists r ≥ 2 such that b ( · ) is in C r + 1 ( R ) , and ρ 0 ∈ W r , ∞ ( R ) ∩ W r , 1 ( R ) . b Then ρ t ∈ W r , ∞ , and for all test function φ ∈ C 3 c ( R ) , there exists a positive constant C such that � � C � � φ, µ N � � E t − ρ t � � ≤ √ . sup N t ∈ [ 0 , T ] 81 where the constant C is of the form β exp ( α � b ′ � t ) .

  66. Control of the drift error term N , ρ t ] − 1 � � � b [ Y 1 , N � b ( Y 1 , N − Y j , N ∀ t ∈ [ 0 , T ] , E drift ( t ) := E ) � . � � t t t N j = 1 � t Notice that, with Y i t = Y i 0 b [ Y i s ; ρ s ] ds + σ w i 0 + t ,   � t N s , ρ s ] − 1 � � t − Y 1 , N � − Y j , N E | Y 1  b [ Y 1 b ( Y 1 , N  ds | = E ) � � t s s � � N 0 j = 1 Since b is Lipschitz with constant L = � b ′ � ∞ , x �→ b [ x , ρ t ] is Lipschitz, and applying Gronwall Lemma � t � t � t t − Y 1 , N s − Y 1 , N E | Y 1 L E | Y 1 | ≤ | ds + E drift ( s ) ds ≤ exp ( L ( t − s )) E drift ( s ) ds . t s 0 0 0 N t , ρ t ] − 1 � � E drift ( t ) ≤ 3 L E | Y 1 , N � t − Y j − Y 1 � b [ Y 1 b ( Y 1 t | + E t ) � � t � N j = 1 � t N � E b ( x − Y t ) − 1 �� � � � b ( x − Y j ≤ 3 L exp ( L ( t − s )) E drift ( s ) ds + E t ) . � � � N x = Y 1 0 t j = 1 �� � 2 � � E b ( x − Y t ) − 1 ≤ C j = 1 b ( x − Y j The ( Y j , j � = 1 ) being i.i.d. E � � N � t ) N . � � N � x = Y 1 t Thus � t ≤ exp ( 4 Lt ) C exp ( − Lt ) C ≤ exp ( 3 Lt ) C E drift ( t ) ≤ 3 L exp ( L ( t − s )) E drift ( s ) ds + √ √ √ . N N N 0 82

  67. A symptomatic case � t 1 Y t = Y 0 + 2 ρ s ( Y s ) ds + w t , ρ t = L ( Y t ) . 0 McKean 1967, Calderoni &Pulvirenti 1983, Sznitman & Varadhan 1986, Sznitman 1986. � t N � Y i , N = Y i K ǫ [ Y i , N s ; µ N s ] ds + σ w i µ N 0 + t , t = δ Y i , N t t 0 i = 1 � R K ǫ ( x − y ) γ ( dy ) with K ǫ ( z ) = 1 ǫ K ( z with K ǫ [ x ; γ ] := ǫ ) and K positive function of mass equal to 1. When ρ 0 ∈ W 2 , 1 ( R ) ∩ W 2 , ∞ ( R ) then ρ t ∈ W 2 , 1 ( R ) ∩ W 2 , ∞ ( R ) for all finite t > 0 and � ρ t − ρ ǫ t � L 1 ( R ) ≤ C ǫ 2 , � t where Y ǫ 2 K ǫ [ Y ǫ s ; ρ ǫ ρ ǫ t = L ( Y ǫ 1 t = Y 0 + s ] ds + w t , t ) . 0 � � � � � � φ, µ N ,ǫ − ρ t � ǫ 2 + exp ( C /ǫ ) � � From the previous lemma: sup t ∈ [ 0 , T ] E � ≤ C . √ N BURGERS : pas=0.1 / 16000 particules/ T= 0.2 /Diffusion= 1 / Epsilon = 0.500E-2 BURGERS : pas=0.1 / 16000 particules/ T= 0.2 /Diffusion= 1 / Epsilon = 0.100 0.7 0.6 solution exacte solution exacte Approximation Approximation 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 0 Numerical experiments are more optimistic : -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 ( ρ 0 ( dx ) = 1 [ 0 , 1 ] with N = 16000 , T = 0 . 2 , σ = 1 , ǫ = 0 . 510 − 2 left, ǫ = 0 . 1 right) 83

  68. Go back to McKean kinetic particle system ( X i t , U i t , t ≤ T , i = 1 , . . . , N ) are the strong solution of � t  � � X i X i U i t = 0 +  s ds mod 1   0 � t  U i t = U i B [ X i s , ρ s ] ds + W i ρ t = L ( X i t , U i  0 + t , t ) , for all t ≤ T ,  0 where we recall that ( X i 0 , U i 0 , i = 1 , . . . , N ) are i.i.d. with density ρ 0 . ( X i ,ǫ t , U i ,ǫ t , t ≤ T , i = 1 , . . . , N ) are the strong solution of � t  � � X i ,ǫ X i U i ,ǫ = 0 +  s ds mod 1  t  0 � t  U i ,ǫ B ǫ [ X i ,ǫ s , ρ ǫ ρ ǫ t = L ( X i ,ǫ t , U i ,ǫ = U i s ] ds + W i  0 + t , t ) , for all t ≤ T ,  t 0 � t  X i , N = X i U i , N  0 + s ds ,   t   0   � N  j = 1 b ( U j , N − X j , N � t 1 s ) K ǫ ( X i , N s ) s U i , N = U i N ds + W i 0 + t , for all t ≤ T . t � N j = 1 K ǫ ( X i , N − X j , N  1 s )   0 N    � �� �   Nadaraya-Watson estimator at X i , N s � � t ; ρ t ] − F ǫ [ X 1 , N � F [ X 1 ; µ N � Control the error seen by the particles : E t ] � . t 84

  69. Rate of convergence For any f measurable bounded on R d , we set the kernel regression version of the conditional expectation : ( x , t ) �→ F [ x ; ρ t ] = E [ f ( U t ) | X t = x ] , � R d × R d f ( v ) K ǫ ( x − y ) ρ t ( dy , dv ) = E [ f ( U t ) K ǫ ( x − X t )] ( x , t ) �→ F ǫ [ x ; ρ t ] = � R d × R d K ǫ ( x − y ) ρ t ( dy , dv ) E [ K ǫ ( x − X t )] Assume that f and b smooth and bounded function with bounded derivatives; K > 0 Lipschitz bounded, with compact support. Theorem 1 For any 1 < p < 1 + 1 + 3 d and c > 0 , there exists a constant C such that for all α > 0 , 1 ǫ > 0 and N > 1 satisfying ≤ c , we bound the error seen by the particles by 1 α 2 ǫ d N p � � � � 1 1 1 1 t ; ρ t ] − F ǫ [ X 1 , N � F [ X 1 � ; µ N � t ] � ≤ C ǫ + αǫ d N + ǫ ( d + 1 ) p N + + . E 2 √ t 1 dp ǫ ( ǫ d N ) N p If we choose α = ǫ , the optimal rate of convergence is achieved for N = ǫ − ( d + 2 ) p and �� � � 1 − � F [ X 1 t ; ρ t ] − F ǫ [ X 1 , N ; µ N ( d + 2 ) p . E t ] ≤ N � t 85

  70. Error decomposition � Smoothing error : there exists C , such that for all t ∈ [ 0 , T ] for all ǫ > 0 . E | F [ X t ; ρ t ] − F ǫ [ X ǫ t ; ρ ǫ t ] | ≤ C ǫ � Kernel regression estimates error : there exists a constant C such that for all t ≤ T , ǫ > 0 and N > 0 ,  2  � � � � � � � j � = i f ( U j ,ǫ t ) K ǫ ( z − X j ,ǫ � t ) 1 � �  � F ǫ [ z ; ρ ǫ  ρ ǫ ǫ d ( N − 1 ) + ǫ 2 t ] − t ( z ) dz ≤ C . E � � � j � = i K ǫ ( z − X j ,ǫ � t ) + ( N − 1 ) α T � Statistical error : for any p > 1 sufficiently close to 1, there exists a constant C such that for α > 0 , ǫ > 0 , N > 1 and t ≤ T � N �� � t ) K ǫ ( X i , N j = 1 E ǫ 0 [ f ( U ǫ − X ǫ t )] � t C C � 0 , X j 0 , U j � � F ǫ [ X i , N ; ρ ǫ t ] − ≤ C ǫ + ǫ d + 1 N + αǫ d N . E � N � t 0 [ K ǫ ( X i , N j = 1 E ǫ − X ǫ t )] + N α 0 , X j 0 , U j t � The iteration error 86

  71. The iteration error Step 1 : remove the denominators � N � N �� t ) K ǫ ( X i , N � j = 1 E ǫ 0 [ f ( U ǫ − X ǫ � t )] j = 1 f ( U j , N ) K ǫ ( X i , N − X j , N ) � 0 , X j 0 , U j t � t t t E � − � � N � N 0 [ K ǫ ( X i , N j = 1 K ǫ ( X i , N − X j , N j = 1 E ǫ − X ǫ t )] + N α ) + N α t t t 0 , X j 0 , U j �� � � N �� � ≤ C � t ) K ǫ ( X i , N t )] − f ( U j , N ) K ǫ ( X i , N − X j , N � E ǫ 0 [ f ( U ǫ − X ǫ N E ) 0 , X j 0 , U j t t t t j = 1 �� � N � � �� + C C 0 [ K ǫ ( X i , N t )] − K ǫ ( X i , N − X j , N � E ǫ − X ǫ � N E ) + 0 , X j 0 , U j t t t 1 ( ǫ d N ) p j = 1 Step 2 : control the derivative of u ( k ) t ,χ ( s , y , v ) = E s , y , v [ b ( k ) ( U ǫ t ) K ǫ ( χ − X ǫ t )] . 1 For all t ≤ T , and p such that 1 ≤ p < 1 + 1 + 3 d , we have � C T d χ |∇ v u T ,χ ( t , x , u ) | p p ≤ sup 2 d ( p − 1 ) . p 2 + 3 ( T − t ) x , u for all ǫ > 0 . In particular, this quantity is time integrable on [ 0 , T ] and the bound of the time integral is independent of ǫ . 87

  72. The iteration error Step 3 : particle removal �� � � t � � � � in 1 � � ∇ v u ( k ) t ( s , X j , N s , U j , N B ǫ [ X j , N s ] − B ǫ [ X j , N s ; ρ ǫ s ; µ N s ) · s ] , N E � ds � t , X i , N 0 j � = i Let p > 1 be sufficiently small. There exists a constant C such that for all α , ǫ and N satisfying ǫ d N > 1 , � t � � � � |∇ v u ( k ) � B ( l ) � t ( s , X j , N s , U j , N ǫ [ X j , N s ; µ N s ] − B ( l ) ǫ [ X j , N s ; ρ ǫ E s ) | 1 · s ] ds t , X i , N 0 � t � � C | B ( l ) ǫ [ X j , N − 1 ; ρ ǫ s ] − B ( l ) ǫ [ X j , N − 1 ; µ N − 1 ≤ 2 E ] | ds p s s s ( t − s ) 0 � t � � N − 1 � � � C 1 � � K ǫ ( X k , N − 1 − X j , N − 1 ) − E ǫ 0 [ K ǫ ( X k , N − 1 − X ǫ + s )] E ds 0 , X j 0 , U j s s s 1 N − 1 α 2 ( ǫ d N ) p 0 j = 1 � � C 1 C + 1 + + αǫ d N , 1 1 ( ǫ d N ) α 2 ( ǫ d N ) p p for all t ≤ T and all j � = i . 88

  73. The iteration error Step 4 : particle inclusion For any p > 1 and c > 0 , there exists a constant C such that for all s and t satisfying 0 ≤ s < t ≤ T and all α > 0 , ǫ > 0 , N > 1 satisfying 1 ≤ c , 1 α 2 ( ǫ d N ) p we have N − 1 � � � � � K ǫ ( X k , N − 1 − X j , N − 1 ) − E ǫ 0 [ K ǫ ( X k , N − 1 − X ǫ 1 t )] E � � 0 , X j 0 , U j t t t N − 1 j = 1 N − 1 � � ≤ C � C � � K ǫ ( X k , N − X j , N s ) − E ǫ 0 [ K ǫ ( X k , N − X ǫ 1 s )] + sup E � � 0 , X j 0 , U j s s d N − 1 1 ǫ s ≤ t ( ǫ d N ) q p j = 1 � � | B ǫ [ X j , N − 1 ; ρ ǫ t ] − B ǫ [ X j , N − 1 ; µ N − 1 E ] | t t t � � | B ǫ [ X j , N ; ρ ǫ t ] − B ǫ [ X j , N ; µ N − 1 , N ≤ C E ] | t t t N − 1 � � � C C � � K ǫ ( X k , N − X j , N s ) − E ǫ 0 [ K ǫ ( X k , N − X ǫ 1 + C sup s )] + + αǫ d N , E � � s 0 , X j 0 , U j s N − 1 1 s ≤ t ( ǫ d N ) p j = 1 where µ N − 1 , N is the normalized empirical distribution of the N − 1 processes ( X k , N , U k , N ) for all k ≤ N − 1 : µ N − 1 , N = � N − 1 1 j = 1 δ { ( X j , N , U j , N ) } . N − 1 89

  74. Smoothing error � � � ≤ E | F [ X t ; ρ t ] − F ǫ [ X t ; ρ ǫ � F [ X t ; ρ t ] − F ǫ [ X ǫ t ; ρ ǫ + E | F ǫ [ X t ; ρ ǫ t ] − F ǫ [ X ǫ t ; ρ ǫ E t ] t ] | t ] | . � �� � � �� � A B A : use the uniform density lower bound + kinetic semigroup properties B : use moreover that the kernel function K is in C 1 b ( R d ) and there exists a constant C such that |∇ K ǫ ( x ) | ≤ C ǫ K ǫ ( x ) for all x and ǫ > 0 . Moreover, assume there exists a constant α T such that for all ǫ > 0 and t ≤ T , we have χ ρ ǫ α T ≤ inf t ⋆ K ǫ ( χ ) , Then, there exists a constant C such that for all ǫ > 0 , |∇ F ǫ [ x ; ρ ǫ t ] | ≤ C . sup sup t ≤ T x ∈ T 90

  75. Rate of convergence for the measured error For any f measurable bounded on R d , we set the kernel regression version of the drift � R d × R d f ( v ) K ǫ ( x − y ) ρ ( dy , dv ) F ǫ [ x ; ρ ] := , � R d × R d K ǫ ( x − y ) ρ ( dy , dv ) ( x , t ) �→ F [ x ; ρ t ] = E [ f ( U t ) | X t = x ] f and b smooth and bounded function with bounded derivatives Proposition 1 For any 1 < p < 1 + 1 + 3 d and c > 0 , there exists a constant C such that for all α > 0 , ǫ > 0 and N > 1 satisfying 1 ≤ c , 1 α 2 ǫ d N p we have � � � 1 1 1 1 � E | F ǫ [ X j , N ; ρ ǫ t ] − F ǫ [ X j , N ; µ N t ] ≤ C ǫ + αǫ d N + ǫ ( d + 1 ) p N + + . � 2 √ t t 1 dp ǫ ( ǫ d N ) N p If we choose α = ǫ , the optimal rate of convergence is achieved for N = ǫ − ( d + 2 ) p and �� � � 1 − � F ǫ [ X j , N ; ρ ǫ t ] − F ǫ [ X j , N ; µ N ( d + 2 ) p . E t ] ≤ N � t t 91

  76. Regression Kernels We consider only boxed kernel K such that b 1 S 0 , r ( x ) ≤ K ( x ) ≤ 1 S 0 , R 92

  77. Nonparametric regression estimate Let ( X i , U i ) be an i.i.d sequence of n random variables. Local averaging estimate : approximate F ( x ) = E [ f ( U ) | X = x ] with: n � F n ( x ) = W n , i ( x ) · f ( U i ) , i = 1 where the weight W n , i depends only on x and ( X j , f ( U j )) , j ≤ n . Kernel estimate : K ǫ ( x − X i ) � n W n , i ( x ) = j = 1 K ǫ ( x − X j ) , where K ǫ ( x ) = K ( x ǫ ) . Related to the minimization: � 1 K ǫ ( x − X i )( f ( U i ) − c ) 2 � � n F n ( x ) = arg min . n c i = 1 93

  78. Nonparametric regression estimate Partitioning estimate : Let P n = { A n , 1 , A n , 2 , . . . } be a partition of the domain. Set 1 { X i ∈ A n , j } � n for x ∈ A n , j . W n , i ( x ) = , i = 1 1 { X i ∈ A n , j } Related to the least squares estimate: � 1 ( f ( U i ) − f n ( X i )) 2 � n � F n = arg min , n f n i = 1 where the arg min is taken on the set of piecewise constant functions adapted to P n . Also: local modeling estimates (e.g. local polynomial estimates), global modeling/least squares estimates, penalized modeling. . . 94

  79. Convergence rate of the nonparametric estimates ◮ Consider the mean L 2 error: � � � � � � F ( x ) − F n ( x ) � 2 ρ ( x ) dx E . D ◮ Variance-Bias decomposition: � � � � � � � � 2 ρ ( x ) dx � F ( x ) − F n ( x ) | bias ( x ) | 2 ρ ( x ) dx . E = Var F n ( x ) ρ ( x ) dx + D ◮ The previous estimators are weakly universally consistent (Stone’s theorem). ◮ For ( p , C ) smooth conditional expectations, the lower optimal convergence 2 p rate is of order n − 2 p + d . Theorem For Lipschitz continuous regression functions, we have E � F n − F � 2 ≤ C 1 n ǫ d + dC ǫ 2 , for both partitioning estimate and kernel estimate (with naive kernel). 2 This gives an optimal rate of n − d + 2 . 95

  80. Local averaging based particle algorithm Particle algorithm : 1. Initialization of ( X i 0 , U i 0 ) for 1 ≤ i ≤ n 2. Time loop : for t k = k ∆ t up to T : ◮ for each particle 1 ≤ i ≤ n : 2.1 update the position : X i , n = X i , n k − 1 + U i , n k − 1 k 2.2 add gaussian noise: U i , n = U i , n k − 1 + ( W i k − W i k − 1 ) k 2.3 drift computation : loop over each particle to calculate the W n , j ( X i , n k − 1 ) : j = 1 b ( U j , n k − 1 ) K n ( X i , n k − 1 − X j , n � N k − 1 ) U i , n k + = ∆ t j = 1 K n ( X i , n k − 1 − X j , n � N k − 1 ) ◮ End loop particles 3. Final mean field evaluation at x : Loop on all particles � n j = 1 f ( U j , n T ) K n ( x − X j , n T ) � n j = 1 K n ( x − X j , n T ) Complexity up to O ( n 2 ) for kernel estimates, and only O ( n ) for partitioning estimates. 96

  81. Numerical simulation For d = 2 Test case dU t = Cdt − ∇ V ( X t ) dt + ( � U t � − 2 U t ) dt + dW t , � �� � � �� � “pressure” conditional drift with V ( x , y ) = 1 2 π cos ( 2 π x ) sin ( 2 π y ) − 1 2 x , X 0 = σ Z with L ( Z ) = N ( 0 , 1 ) , L ( U 0 ) = N ( 0 , 1 ) , σ = 0 . 3 . Reference simulation Regression estimate implemented with Epanechnikov kernel T = 2 , 128 times step, N = 10 5 particles, ǫ = ¯ 1 16 . 97

  82. 98

  83. We want to observe the error of the scheme as � | F [ x ; ρ T ] − F ǫ [ x ; µ ǫ, N T ] | ρ T ( x ) dx , D First we approximate the mean field F [ x ; ρ T ] by N mc � � � � 1 x ; µ ǫ, ¯ x ; µ ǫ, ¯ N ( ω k ) N ] := , F ǫ F ǫ N mc k = 1 Using spline interpolation on a mesh of size ∆ x , we observe the approximate L 1 error � � N mc � � � 1 ∆ x � F ǫ x ; µ ǫ, ¯ � ¯ − F ∆ x ǫ [ x ; µ ǫ, N ( ω k )] ρ ∆ x ( x ) dx . N ] N mc D k = 1 99

  84. Observe the approximate L 1 error: 0.028 10 5 3 0.016 0.021 Optimal N ( ǫ ) 0.015 1 0 0 N = 1 /ǫ 4 0.014 . . 0 0 0.029 3 0.024 1 0.023 0.018 0.015 0.017 N 0.025 0.020 0.022 0.019 0.026 0.026 0 0.022 0.024 0.023 . 0 2 5 10 − 1 ǫ in-line with what we expected from the theoretical rate where the optimal value 1 of window size is given by d + 2 . 1 N 100

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend