stochastic ising model with
play

Stochastic Ising model with plastic interactions Eugene Pechersky - PowerPoint PPT Presentation

Stochastic Ising model with plastic interactions Eugene Pechersky a,b , Guillem Via a , Anatoly Yambartsev a a Institute of Mathematics and Statistics, University of So Paulo, Brazil. b Institute for Information Transmission Problem, Russian


  1. Stochastic Ising model with plastic interactions Eugene Pechersky a,b , Guillem Via a , Anatoly Yambartsev a a Institute of Mathematics and Statistics, University of Sรฃo Paulo, Brazil. b Institute for Information Transmission Problem, Russian Academy of Science, Russia. 2nd Workshop NeuroMat, November 25, 2016

  2. Phenomenon : Strengthening of the synapses between co-active neurons This phenomenon is known today as Hebbian plasticity and is a form of Long-Term Potentiation (LTP) and of activity-dependent plasticity. Martin et al. (2000) and Neves et al. (2008) review some of the experimental evidence showing that the memory attractors are formed by means of LTP. Models for memory attractors : Hopfield (1982) proposed a model to study the dynamics of attractors and the storage capacity of neural networks by means of the Ising model (for review about results from the model see Brunel et al. (2013)). Each neuron is represented by a spin whose up and down states correspond to a high and a low ring rates, respectively. Then the cell assembly would be represented by the set of vertices in the network, the engram by the connectivity matrix and the attractor by the stable spin configurations. Hopfield gave a mathematical expression for the connectivity matrix that supports a given set of attractors chosen a priori. However, the learning phase in which such connectivity is built through synaptic plasticity mechanisms is not been considered within its framework. To the best of our knowledge, analytical results on neural networks with plastic synapses where the learning phase is been considered are restricted to models of binary neurons with binary synapses. We could not find any analytical result on neural networks with non-binary synapses or using the Ising model with plastic interactions in the literature.

  3. Model : We present a model of a network of binary point neurons also based on the Ising model. However, in our case we consider the connections between neurons to be plastic so that their strengths change as a result of neural activity. In particular, the form of the transitions for the coupling constants resemble a basic Hebbian plasticity rule, as described by Gerstner and Kistler (2002). Therefore, it represents a mathematically treatable model capable of reproducing several features from learning and memory in neural networks. The model combines the stochastic dynamics of spins on a finite graph together with the dynamics of the coupling constants between adjacent sites. The dynamics are described by a non-stationary continuous-time Markov process.

  4. Let ๐ป = (๐‘Š; ๐น) be a finite undirected graph without self-loops. For each vertex ๐‘ค โˆˆ ๐‘Š we associate a spin ๐œ ๐‘ค โˆˆ {โˆ’1,1} and, for each edge ๐‘“ = (๐‘ค, ๐‘คยด) โˆˆ ๐น we associate a coupling constant ๐พ ๐‘“ โ‰ก ๐พ ๐‘ค๐‘คยด โˆˆ โ„ค . These constants are often called exchange energy constants. Here we will also use the term strength for the coupling constants. ๐พ ๐‘ค๐‘ฅ ๐‘ค ๐‘ฅ ๐œ ๐‘ค ๐œ ๐‘ฅ configuration of spins ๐‰ = ๐œ ๐‘ค , ๐‘ค โˆˆ ๐‘Š โˆˆ {โˆ’1,1} ๐‘Š configuration of strengths ๐‘ฒ = ๐พ ๐‘“ , ๐‘“ โˆˆ ๐น โˆˆ โ„ค ๐‘Š state space ๐’ is the set of all possible pairs of configurations ๐‘ฅยด of spins and strengths ๐’ = {โˆ’1,1} ๐‘Š ร— โ„ค ๐‘Š ๐œ ๐‘ฅยด ๐พ ๐‘ค๐‘ฅยด ๐พ ๐‘ค๐‘ฅ ๐‘ค ๐‘ฅ The following functions will play a key role ๐œ ๐‘ค ๐œ ๐‘ฅ in further definitions: weight for sign flip ๐œƒ ๐‘ค ๐‰, ๐‘ฒ = ๐พ ๐‘ค๐‘ฅ ๐œ ๐‘ค ๐œ ๐‘ฅ + ๐พ ๐‘ค๐‘ฅยด ๐œ ๐‘ค ๐œ ๐‘ฅยด ๐œƒ ๐‘ค ๐‰, ๐‘ฒ = ๐œ ๐‘ค ๐พ ๐‘ค๐‘คยด ๐œ ๐‘คยด ๐‘คยด:๐‘คยด~๐‘ค

  5. configuration of spins ๐‰ = ๐œ ๐‘ค , ๐‘ค โˆˆ ๐‘Š โˆˆ {โˆ’1,1} ๐‘Š weight for sign flip configuration of strengths ๐‘ฒ = ๐พ ๐‘“ , ๐‘“ โˆˆ ๐น โˆˆ โ„ค ๐‘Š ๐œƒ ๐‘ค ๐‰, ๐‘ฒ = ๐œ ๐‘ค ๐พ ๐‘ค๐‘คยด ๐œ ๐‘คยด state space ๐’ is the set of all possible pairs of configurations of spins and strengths ๐’ = {โˆ’1,1} ๐‘Š ร— โ„ค ๐‘Š ๐‘คยด:๐‘คยด~๐‘ค Transitions rates: for given state ๐‰, ๐‘ฒ โˆˆ ๐’ 1 spin flip ๐œ ๐‘ค โ†’ โˆ’๐œ ๐‘ค occurs with rate ๐‘‘ ๐‘ค ๐‰, ๐‘ฒ = (2๐œƒ ๐‘ค ๐‰,๐‘ฒ ) 1+exp strength change ๐พ ๐‘ค๐‘คยด โ†’ ๐พ ๐‘ค๐‘คยด + ๐œ ๐‘ค ๐œ ๐‘คยด occurs with constant rate ๐œ‰ ๐‘ค๐‘คยด ๐‰, ๐‘ฒ โ‰ก ๐œ‰ Continuum time Markov chain: ๐œŠ ๐‘ข = ๐‰(๐‘ข), ๐‘ฒ(๐‘ข) (๐‘ข) embedded Markov chain with transitions Discrete time Markov chain: ๐œŠ ๐‘› = ๐‰ (๐‘ข), ๐‘ฒ spin flip ๐œ ๐‘ค โ†’ โˆ’๐œ ๐‘ค occurs with probability ๐‘‘ ๐‘ค ๐‰,๐‘ฒ ๐ธ ๐‰,๐‘ฒ ๐œ‰ strength change ๐พ ๐‘ค๐‘คยด โ†’ ๐พ ๐‘ค๐‘คยด + ๐œ ๐‘ค ๐œ ๐‘คยด occurs with probability ๐ธ ๐‰,๐‘ฒ where ๐ธ ๐‰, ๐‘ฒ = ๐น ๐œ‰ + ๐‘‘ ๐‘ค ๐‰, ๐‘ฒ ๐‘คโˆˆ๐‘Š for given state ๐‰, ๐‘ฒ โˆˆ ๐’ ๐น ๐œ‰ < ๐ธ ๐‰, ๐‘ฒ โ‰ค ๐น ๐œ‰ + |๐‘Š|

  6. Theorem 1: The Markov chain ๐œŠ ๐‘› ( ๐œŠ ๐‘ข ) is transient

  7. Lyapunov function criteria for transience Fayolle et al. (1995), Menshikov et al. (2017) For a discrete-time Markov chain โ„’ = (๐œ‚ ๐‘› , ๐‘› โˆˆ โ„•) with state space ฮฃ to be transient it is necessary and sufficient that there exists a measurable positive function (the Lyapunov function) ๐‘”(๐›ฝ) , on the state space, ๐›ฝ โˆˆ ฮฃ , and a non-empty set ๐ต โŠ‚ ฮฃ , such that the following inequalities hold true (L1) ๐”ฝ ๐‘” ๐œ‚ ๐‘›+1 โˆ’ ๐‘” ๐œ‚ ๐‘› ๐œ‚ ๐‘› = ๐›ฝ] โ‰ค 0, for any ๐›ฝ โˆ‰ ๐ต , (L2) there exists ๐›ฝ โˆ‰ ๐ต such that ๐‘” ๐›ฝ < inf ๐›พโˆˆ๐ต ๐‘”(๐›พ) . Moreover, for any initial ๐›ฝ โˆ‰ ๐ต ๐‘”(๐›ฝ) โ„™ ๐œ ๐ต < โˆž ๐œ‚ 0 = ๐›ฝ) โ‰ค ๐›พโˆˆ๐ต ๐‘”(๐›พ) inf

  8. Theorem 1: The Markov chain ๐œŠ ๐‘› ( ๐œŠ ๐‘ข ) is transient. Proof of Theorem: choose ๐‘‚ such that ๐‘“ 2๐‘‚ ๐œ‰ โ‰ฅ |๐‘Š|(๐‘‚ + 1) then the Lyapunov function will be defined as 1 , if ๐œƒ ๐‘ค > ๐‘‚, for all ๐‘ค โˆˆ ๐‘Š, ๐œƒ ๐‘ค ๐‘” ๐‰, ๐‘ฒ = ๐‘คโˆˆ๐‘Š |๐‘Š| ๐‘‚ , otherwise. and the set A will be defined as ๐ต = { ๐‰, ๐‘ฒ โˆˆ ๐’: min ๐‘คโˆˆ๐‘Š ๐œƒ ๐‘ค ๐‰, ๐‘ฒ โ‰ค ๐‘‚} Then (L1) and (L2) hold true

  9. Let ๐œ be the freezing time (๐‘› โˆ’ 1) โ‰  ๐‰ (๐‘›)} assuming max{โˆ…} = 0 . ๐œ โ‰” max{๐‘› โ‰ฅ 1: ๐‰ Theorem 2: โ„™ ๐œ < โˆž = 1

  10. Proof of Theorem 2 1 , if ๐œƒ ๐‘ค > ๐‘‚, for all ๐‘ค โˆˆ ๐‘Š, ๐œƒ ๐‘ค ๐œƒ 2 ๐‘” ๐‰, ๐‘ฒ = ๐‘คโˆˆ๐‘Š |๐‘Š| ๐œƒ ๐‘ค > ๐‘‚, for all ๐‘ค โˆˆ ๐‘Š ๐‘‚ , otherwise. ๐’ โˆ– ๐ต the ๐ต was defined as ๐‘‚ ๐ต = { ๐‰, ๐‘ฒ โˆˆ ๐’: min ๐‘คโˆˆ๐‘Š ๐œƒ ๐‘ค ๐‰, ๐‘ฒ โ‰ค ๐‘‚} ๐œƒ 1 ๐‘‚ Moreover for any ๐‰, ๐‘ฒ โˆˆ ๐’ โˆ– ๐ต โˆ’1 ๐‰, ๐‘ฒ ๐›พโˆˆ๐ต ๐‘” ๐›พ = โ„™ ๐œ ๐ต < โˆž ๐œŠ 0 = ๐‰, ๐‘ฒ ) โ‰ค ๐‘” ๐‰, ๐‘ฒ ๐œƒ ๐‘ค ๐‘‚ ๐‘‚ ๐‘คโˆˆ๐‘Š โ‰ค ๐‘คโˆˆ๐‘Š ๐œƒ ๐‘ค ๐‰, ๐‘ฒ โ‰ค ๐‘‚ + 1 < 1 ๐‘Š inf min ๐‘‚ 1 โ„™ ๐œ ๐ต = โˆž ๐œŠ 0 = ๐‰, ๐‘ฒ ) โ‰ฅ ๐‘‚ + 1

  11. Proof of Theorem 2 ๐œƒ 2 ๐‘ก ๐‰, ๐‘ฒ = ๐œƒ ๐‘ค ๐‰, ๐‘ฒ ๐œƒ ๐‘ค > ๐‘‚, for all ๐‘ค โˆˆ ๐‘Š ๐‘คโˆˆ๐‘Š ๐’ โˆ– ๐ต ๐‘‚ If ๐‰, ๐‘ฒ such that ๐œƒ ๐‘ค ๐‰, ๐‘ฒ < โˆ’|๐‘Š|/2 for some ๐‘ค โˆˆ ๐‘Š ๐”ฝ ๐‘ก ๐œŠ ๐‘›+1 โˆ’ ๐‘ก ๐œŠ ๐‘› ๐œŠ ๐‘› = ๐‰, ๐‘ฒ ] โ‰ฅ 1/2 โˆ’|๐‘Š| /2 ๐œƒ 1 ๐‘‚ โˆ’|๐‘Š| /2 If ๐‰, ๐‘ฒ such that ๐œƒ ๐‘ค ๐‰, ๐‘ฒ < 0 then the probability of the spin flip ๐œƒ ๐‘ค โ†’ โˆ’๐œƒ ๐‘ค is at least 1/2๐ธ ๐‰, ๐‘ฒ > 1/(2(๐œ‰ ๐น + |๐‘Š|)) ๐‘Š Let โ„ฌ = ๐‰, ๐‘ฒ : min ๐‘คโˆˆ๐‘Š ๐œƒ ๐‘ค ๐‰, ๐‘ฒ < โˆ’ โŠ‚ ๐ต . Thus if initial ๐‰, ๐‘ฒ โˆˆ โ„ฌ then 2 โ„™ ๐œ ๐’โˆ–โ„ฌ < โˆž ๐œŠ 0 = ๐‰, ๐‘ฒ = 1

  12. Theorem 3: As a consequence of Theorem 2, for any ๐‘“ โˆˆ ๐น almost surely ๐‘“ (๐‘›) ๐พ = 1 ๐พ ๐‘“ (๐‘ข) lim |๐น| , lim = ๐œ‰. ๐‘› ๐‘ข ๐‘›โ†’โˆž ๐‘ขโ†’โˆž

  13. โˆž = ๐œ ๐‘ค โˆž for any (๐‘ค, ๐‘คยด) โˆˆ ๐น โˆž ๐œ ๐‘คยด Theorem 4: ๐‘˜ ๐‘ค๐‘คยด

  14. References: 1. Martin, S., Grimwood, P., Morris, R., 2000. Synaptic plasticity and memory: an evaluation of the hypothesis. Annual review of neuroscience 23 (1), 649-711. 2. Neves, G., Cooke, S. F., Bliss, T. V., 2008. Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nature Reviews Neuroscience 9 (1), 65-75. 3. Hopfield, J. J., 1982. Neural networks and physical systems with emergent collective computational abilities. Proceedings of the national academy of sciences 79 (8), 2554-2558. 4. Brunel, N., del Giudice, 160 P., Fusi, S., Parisi, G., Tsodyks, M., 2013. Selected Papers of Daniel Amit (1938-2007). World Scientic Publishing Co., Inc. 5. Gerstner, W., Kistler, W. M., 2002. Spiking neuron models: Single neurons, populations, plasticity. Cambridge university press. 6. Fayolle, G., Malyshev, V. A., Menshikov, M. V., 1995. Topics in the constructive theory of countable Markov chains. Cambridge university press. 7. Menshikov, M., Popov, S., Wade, A., 2017. Non-homogeneous random walks - Lyapunov function methods for near-critical stochastic systems. Cambridge university press, to appear.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend