stochastic galerkin methods without uniform ellipticity
play

Stochastic Galerkin Methods without Uniform Ellipticity Marcus - PowerPoint PPT Presentation

Stochastic Galerkin Methods without Uniform Ellipticity Marcus Sarkis (WPI/IMPA) Collaborator: Juan Galvis (Texas A & M) WPI/IMPA RICAM MS & AEE-Workshop4, Dec13/2011 Marcus Sarkis (WPI/IMPA), Collaborator: Juan Galvis (Texas A &


  1. Stochastic Galerkin Methods without Uniform Ellipticity Marcus Sarkis (WPI/IMPA) Collaborator: Juan Galvis (Texas A & M) WPI/IMPA RICAM MS & AEE-Workshop4, Dec13/2011 Marcus Sarkis (WPI/IMPA), Collaborator: Juan Galvis (Texas A & M) () SPDE-GALERKIN RICAM 2011 1 / 28

  2. Problem of interest Consider the Darcy’s equation −∇ x . ( κ ( x , ω ) ∇ x u ( x , ω )) = f ( x , ω ) , for x ∈ D ⊂ R d   u ( x , ω ) = 0 , on ∂ D  κ ( x , ω ) = e W ( x ,ω ) ◮ W ( x , ω ) = � ∞ k =1 a k ( x ) ξ k ( ω ) ◮ ξ k are iid standard normal random variables ◮ e W ( x ,ω ) ∈ (0 , ∞ ) not bounded, not uniformly elliptic f ( x , ω ) ◮ Random forcing term Marcus Sarkis (WPI/IMPA), Collaborator: Juan Galvis (Texas A & M) () SPDE-GALERKIN RICAM 2011 2 / 28

  3. Outline One-dimensional log-normal noise White noise framework Countable infinite-dimensional log-normal noise Galerkin spectral method Discretization, well-posedness, a priori error Numerical results Conclusions Marcus Sarkis (WPI/IMPA), Collaborator: Juan Galvis (Texas A & M) () SPDE-GALERKIN RICAM 2011 3 / 28

  4. Breeding analysis on Log-Normal without ellipticity November 2005: I. Babuska, F. Nobile and R. Tempone: A stochastic collocation method for elliptic partial differential equations with random input data. March 2008: J. Galvis and S., Approximating infinity-dimensional stochastic Darcy’s equations without uniform ellipticity. March 2009: X. Wan, B. Rozovskii and G. E. Karniadakis, A stochastic modeling methodology based on weighted Wiener chaos and Malliavin calculus. May 2009: C.J. Gittelson, Stochastic Galerkin discretization of the lognormal isotropic diffusion problem. June 2010: J. Charrier, Strong and weak error estimates for the solutions of elliptic partial differential equations with random coefficients. January 2011: A. Mugler and H.-J. Starkloff, On elliptic partial differential equations with random coefficients. Marcus Sarkis (WPI/IMPA), Collaborator: Juan Galvis (Texas A & M) () SPDE-GALERKIN RICAM 2011 4 / 28

  5. References Approximating infinity-dimensional stochastic Darcy’s equations without uniform ellipticity, Juan Galvis and Marcus Sarkis. SIAM J. Numer. Anal., Vol. 47(5), pp. 3624-3651, 2009. Regularity results for the ordinary product stochastic pressure equation, Juan Galvis and Marcus Sarkis. Submitted. Preprint serie IMPA A 692, 2011. An introduction to infinite-dimensional analysis, Giuseppe Da Prato. Universitext, Springer-Verlag, Berlin, 2006. Stochastic analysis, Ichiro Shigekawa. Translations of Mathematical Monographs, Vol. 224, AMS, Providence, RI, 2004. Marcus Sarkis (WPI/IMPA), Collaborator: Juan Galvis (Texas A & M) () SPDE-GALERKIN RICAM 2011 5 / 28

  6. A simple example: one-dimensional log-normal noise − ( e a 1 ( x ) ξ 1 u x ) x = f ( x ) , in D = (0 , 1) Young Inequality: Let C 1 := max x ∈ D | a 1 ( x ) | and ǫ > 0 C 2 C 2 2 ǫ e − ǫ 2 ξ 2 ǫ 2 ξ 2 1 1 ≤ e a 1 ( x ) ξ 1 ≤ e 1 e − 2 ǫ e 1 Idea: Use weights of the type e s ξ 2 1 (easy to integrate) � ∞ � 1 G ( y ) e sy 2 − 1 G ( ξ 1 ) e s ξ 2 2 y 2 dy 1 d ξ 1 = √ 2 π −∞ Lax Milgram: C 2 1 H − 1 (0 , 1) e ǫξ 2 � u x ( · , ξ 1 ) � 2 L 2 (0 , 1) ≤ C 2 ǫ � f � 2 P e 1 Marcus Sarkis (WPI/IMPA), Collaborator: Juan Galvis (Texas A & M) () SPDE-GALERKIN RICAM 2011 6 / 28

  7. A simple example: one-dimensional log-normal noise C 2 1 H − 1 ( D ) e ǫξ 2 � u x ( · , ξ 1 ) � 2 L 2 ( D ) ≤ C 2 ǫ � f � 2 P e 1 Integrate over ξ 1 , (0 < ǫ < 1 / 2) u ∈ H 1 0 ( D ) ⊗ ( L 2 )( d ξ 1 ) bounded by f ∈ H − 1 ( D ) ⊗ ( L 2 ) ǫ ( d ξ 1 ) Integrate over ξ 1 , ( ǫ > 0 and s ∈ R such that s + ǫ < 1 / 2) � ∞ � 1 L 2 ( D ) e sy 2 − 1 L 2 ( D ) e s ξ 2 2 y 2 dy || u x ( · , ξ 1 ) || 2 � u x ( · , y ) � 2 √ 1 d ξ 1 = 2 π −∞ � ∞ C 2 1 e ( s + ǫ ) y 2 − 1 1 2 y 2 dy C 2 ǫ � f � 2 ≤ √ P e H − 1 2 π −∞ C 2 ǫ (1 − 2( s + ǫ )) − 1 1 C 2 2 � f � 2 = P e H − 1 ( D ) For s � = 0, u x ∈ L 2 ( D ) ⊗ L 2 s ( d ξ 1 ) important when f ( x , ξ 1 ) Marcus Sarkis (WPI/IMPA), Collaborator: Juan Galvis (Texas A & M) () SPDE-GALERKIN RICAM 2011 7 / 28

  8. A simple example: one-dimensional log-normal noise RHS f ( x , ξ 1 ) with lack ( s < 0) extra ( s > 0 ) decay in ξ 1 C 2 � � L 2 ( D ) e s ξ 2 1 H − 1 ( D ) e ( s + ǫ ) ξ 2 � u x ( · , ξ 1 ) � 2 1 d ξ 1 ≤ C 2 � f ( · , ξ 1 ) � 2 1 d ξ 1 P e ǫ Note: u → s , f → s + ǫ , and v → − ( s + ǫ ) Given f ∈ H − 1 ( D ) ⊗ L 2 s + ǫ ( d ξ 1 ), find u ∈ H 1 0 ( D ) ⊗ L 2 s ( d ξ 1 ) such that ∀ v ∈ H 1 0 ( D ) ⊗ L 2 a ( u , v ) = f ( v ) , − ( s + ǫ ) ( d ξ 1 ) Existence and uniqueness (inf-sup condition) Galvis and S. (09’) Marcus Sarkis (WPI/IMPA), Collaborator: Juan Galvis (Texas A & M) () SPDE-GALERKIN RICAM 2011 8 / 28

  9. We need a theoretical framework to deal: Infinite-dimensional case (Gaussian measure) Generalized Wiener-chaos expansions (on Hilbert spaces) Galerkin spectral methods (Explicit computations) A priori error estimates (Natural to establish) Regularity theory (Derivatives in ω and x ) Gaussian Sobolev (Hilbert) spaces Constants that depend on few quantities Marcus Sarkis (WPI/IMPA), Collaborator: Juan Galvis (Texas A & M) () SPDE-GALERKIN RICAM 2011 9 / 28

  10. Probability space: constructed from a pair ( H , A ) Using KL: ◮ H := L 2 ( D ) ◮ Correlation operator: C v ( x ) := � D k ( x , ˜ x ) v (˜ x ) d ˜ x ◮ C → : Eigenfunctions q k , eigenvalues µ k ◮ A = C − 1 ◮ A → : Eigenfunctions q k , eigenvalues λ k = 1 /µ k Using convolution (1D- Smoothed white noise) ◮ H := L 2 ( R ) dx 2 + x 2 + 1 ◮ A := − d 2 ◮ A → : Hermite functions q k , eigenvalues λ k = 2 k Marcus Sarkis (WPI/IMPA), Collaborator: Juan Galvis (Texas A & M) () SPDE-GALERKIN RICAM 2011 10 / 28

  11. White noise framework Hilbert space H , operator A , and H -orthonormal basis { q k } ∞ k =1 : ◮ Aq k = λ k q k , k = 1 , 2 , . . . ◮ 1 < λ 1 ≤ λ 2 ≤ · · · k =1 λ − 2 θ ◮ � ∞ < ∞ for some constant θ > 0 k H = � ∞ k =1 λ 2 p p ≥ 0, ξ ∈ H , � ξ � 2 p := � A p ξ � 2 k ( ξ, q k ) 2 H S ′ S p := { ξ ∈ H ; � ξ � p < ∞} S := ∩ p ≥ 0 S p Probability measure µ (Bochner-Minlos theorem) characterized by � E µ e i �· ,ξ � := S ′ e i � ω,ξ � d µ ( ω ) = e − 1 2 � ξ � 2 H , for all ξ ∈ S Probability space (Ω , F , P ) = ( S ′ , B ( S ′ ) , µ ) Marcus Sarkis (WPI/IMPA), Collaborator: Juan Galvis (Texas A & M) () SPDE-GALERKIN RICAM 2011 11 / 28

  12. Remarks: Fernique and change of variables µ ( S − θ ) = 1 where S − θ = { ω ∈ S ′ : � ω � − θ < ∞} � E µ e i �· ,ξ � := e i � ω,ξ � d µ ( ω ) = e − 1 2 � ξ � 2 H for all ξ ∈ S S − θ ( S − θ , B ( S − θ ) , µ ): normally distributed RV X ξ ( ω ) = � ω, ξ � Equivalent formulation: � µ ( h ) = e − 1 2 � ξ � 2 µ e i �· ,ξ � := A − 2 θ for all ξ ∈ S e i � h ,ξ � d ˜ E ˜ H µ Gaussian measure with covariance A − 2 θ ˜ µ ): normally distributed RV Y ξ ( h ) = � h , A θ ξ � ( H , B ( H ) , ˜ See Da Prato (06’) for θ = 1 / 2 and Galvis and S. (11’) Marcus Sarkis (WPI/IMPA), Collaborator: Juan Galvis (Texas A & M) () SPDE-GALERKIN RICAM 2011 12 / 28

  13. Gaussian Field W ( x , ω ) = � ω, φ x � In KL: − 1 ◮ φ x (˜ x ) = � ∞ x ) ≡ φ ( x , ˜ k =1 λ 2 q k ( x ) q k (˜ x ) k ◮ W ( x , ω ) = � ω, φ x � = � ∞ k =1 a k ( x ) � ω, q k � − 1 ◮ a k ( x ) = λ 2 q k ( x ) k ◮ ξ k ( ω ) = � ω, q k � i.i. normally distributed In convolution: ◮ φ x (˜ x ) ≡ φ ( x − ˜ x ) (smoothed window) ◮ W ( x , ω ) = � ω, φ x � = � ∞ k =1 a k ( x ) � ω, q k � ◮ a k ( x ) = � R φ ( x − ˜ x ) q k (˜ x ) d ˜ x ◮ ξ k ( ω ) = � ω, q k � i.i. normally distributed Marcus Sarkis (WPI/IMPA), Collaborator: Juan Galvis (Texas A & M) () SPDE-GALERKIN RICAM 2011 13 / 28

  14. Countable independent normals W ( x , ω ) = � ω, φ x � = � ∞ k =1 a k ( x ) ξ k ( ω ) − ǫλ − 2 θ + ǫλ − 2 θ − λ 2 θ k a 2 ξ k ( ω ) 2 ≤ a k ( x ) ξ k ( ω ) ≤ λ 2 θ k a 2 ξ k ( ω ) 2 k ( x ) k ( x ) k k 2 ǫ 2 2 ǫ 2 − ǫ � ω � 2 + ǫ � ω � 2 −||| φ ||| 2 ≤ � ω, φ x � ≤ ||| φ ||| 2 − θ − θ θ θ 2 ǫ 2 2 ǫ 2 ||| φ ||| 2 θ := sup x ∈ D � φ x � 2 θ ∞ ∞ � φ x � 2 � λ 2 θ k ( φ x , q k ) 2 � λ 2 θ k a 2 θ = H = k ( x ) < ∞ k =1 k =1 − θ := � ∞ � ω � 2 k =1 λ − 2 θ � ω, q k � 2 k ∞ � S ′ � ω � 2 � λ − 2 θ − θ d µ ( ω ) = < ∞ k k =1 Marcus Sarkis (WPI/IMPA), Collaborator: Juan Galvis (Texas A & M) () SPDE-GALERKIN RICAM 2011 14 / 28

  15. Two examples KL: √ µ k < ∞ ◮ � ∞ k =1 ◮ sup k � q k � L ∞ ( D ) < ∞ ◮ Take θ = 1 / 4, both conditions are satisfied Smoothed white noise: ◮ λ k = 2 k (note that � ∞ k =1 λ − 1 = ∞ ) k ◮ φ ( x − ˜ x ) a smooth window (the a k ( x ) decay fast) ◮ Take θ > 1, both conditions are satisfied Marcus Sarkis (WPI/IMPA), Collaborator: Juan Galvis (Texas A & M) () SPDE-GALERKIN RICAM 2011 15 / 28

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend