status of the katrin experiment and commissioning of the
play

Status of the KATRIN Experiment and commissioning of the spectrometer - PowerPoint PPT Presentation

Status of the KATRIN Experiment and commissioning of the spectrometer and detector section Thomas Thmmler for the KATRIN collaboration DESY-Physikseminar, June 2013, Hamburg & Zeuthen KIT Center Elementary Particle and Astroparticle Physics


  1. Status of the KATRIN Experiment and commissioning of the spectrometer and detector section Thomas Thümmler for the KATRIN collaboration DESY-Physikseminar, June 2013, Hamburg & Zeuthen KIT Center Elementary Particle and Astroparticle Physics (KCETA) Institute for Nuclear Physics (IKP) KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association

  2. Goal of KATRIN model-independent neutrino mass determination ! ! " precise spectroscopy of Tritium ! -decay ! ! " unprecedented sensitivity of " ! " ! ! ! ! 200 meV/c 2 (90% C.L.) ! Introduction and KATRIN setup ! ! " Spectrometer-, Detector-Section ! ! " Status and Commissioning runs ! ! " Summary and Outlook ! ! " 2 T. Thümmler - Status and commissioning of KATRIN

  3. Motivation: Neutrinos in Astroparticle Physics cosmology: role of ! ! ´s as hot (warm?) dark matter? particle physics: origin and hierarchy of the ! ! -mass? cosmology particle physics fermions bosons neutrinos Millennium Simulation massless bosons 3 T. Thümmler - Status and commissioning of KATRIN

  4. Neutrino Mass: Status and Perspectives Experiments on Neutrino Oscillations: Clear evidence for neutrino flavour oscillations: ! ! " ! ( ! m 32 ) 2 � 2.4 # 10 -3 eV 2 /c 4 Atmospheric neutrinos: ! ! ! " ! ( ! m 21 ) 2 � 7.6 # 10 -5 eV 2 /c 4 ! Solar neutrinos: ! ! " ! " Well established fact: m " �� 0 ! ! Input from Cosmology: measures # m i and HDM $ " ! ! " very sensitive, but model dependent! ! ! " Planck: # m i < 0.98 eV " ! " (Planck 2013 results. XVI. Cosm. param.) ! potential: # m i = 20-50 meV " ! " (Planck, LSST, weak lensing) ! 4 T. Thümmler - Status and commissioning of KATRIN

  5. Neutrino Mass: Status and Perspectives neutrino masses in lab. experiments 5 T. Thümmler - Status and commissioning of KATRIN

  6. Neutrino Mass: Status and Perspectives neutrino masses in lab. experiments search for 0 ! ßß eff. Majorana mass m ßß ! model-dependent (CP-phases) ! ! effective Majorana mass: ! � � ! � � � U 2 ei · m ν i m ββ = � � ! � � � � i !" probe " as Majorana particle: ? ! ν = ¯ ν ! status: m ßß < 0.35 eV, evidence? ! !" potential: m ßß = 20-50 meV ! !" GERDA, EXO, SNO+, MAJORANA, " Cuore, KamLAND-Zen, ... ! 6 T. Thümmler - Status and commissioning of KATRIN

  7. Neutrino Mass: Status and Perspectives neutrino masses in lab. experiments search for 0 ! ßß kinematics of ß-decay eff. Majorana mass m ßß absolute ! ! e -mass: m ! ! model-independent ! ! model-dependent (CP-phases) ! ! squared neutrino mass: ! ! ! effective Majorana mass: ! | U ei | 2 · m 2 � m 2 ν e = ! � � ! ν i � � � U 2 ! ei · m ν i m ββ = � � i ! � � ! direct, from kinematics ! � � i !" probe " as Majorana particle: ? ! ν = ¯ ν ! status: m ! < 2.3 eV ! ! status: m ßß < 0.35 eV, evidence? ! !" potential: m ! = 200 meV ! !" potential: m ßß = 20-50 meV ! !" KATRIN, MARE, " !" GERDA, EXO, SNO+, MAJORANA, " Project 8, ECHO " Cuore, KamLAND-Zen, ... ! ! 7 T. Thümmler - Status and commissioning of KATRIN

  8. ß-decay – Fermi theory & ! -mass ß-decay kinematics close to endpoint E 0 : model independent measurement of m( ! e ), based solely on kinematic parameters & energy conservation d " ( E 0 $ E ) 2 $ m i 2 # F ( E , Z ) # % ( E 0 $ E $ m i ) i d E = C # p # ( E + m e ) # ( E 0 $ E ) # observable m 2 ( " e ): 3 2 # $ 2 m ( " e ) = U ei m i effective electron- " -mass i = 1 8 T. Thümmler - Status and commissioning of KATRIN

  9. ß-decay – Fermi theory & ! -mass ß-decay kinematics close to endpoint E 0 : model independent measurement of m( ! e ), based solely on kinematic parameters & energy conservation d " ( E 0 $ E ) 2 $ m i 2 # F ( E , Z ) # % ( E 0 $ E $ m i ) i d E = C # p # ( E + m e ) # ( E 0 $ E ) # observable m 2 ( " e ): 3 2 # $ 2 m ( " e ) = U ei m i effective electron- " -mass i = 1 � 3 � ∆ E E 0 !" small modifications by final states, radiative & recoil corrections 9 T. Thümmler - Status and commissioning of KATRIN

  10. ß-decay – Fermi theory & ! -mass ß-decay kinematics close to endpoint E 0 : model independent measurement of m( ! e ), based solely on kinematic parameters & energy conservation d " ( E 0 $ E ) 2 $ m i 2 # F ( E , Z ) # % ( E 0 $ E $ m i ) i d E = C # p # ( E + m e ) # ( E 0 $ E ) # observable m 2 ( " e ): 3 2 # $ 2 m ( " e ) = U ei m i effective electron- " -mass i = 1 � 3 � ∆ E key requirements: E 0 !" low endpoint ! source !" high count rate !" high energy resolution !" extremely low background !" small modifications by final states, radiative & recoil corrections 10 T. Thümmler - Status and commissioning of KATRIN

  11. The MAC-E filter Magnetic Adiabatic Collimation with Electrostatic Filter A. Picard et al., NIM B 63 (1992) � Design Facts: B max = 6 T ! B min = 0.3 mT ! B min / B max = 5∙10 -5 μ = E � / B = const. U 0 = 18.6 kV E = 18.6 keV E = E � + E || adiabatic transport: E � ! E || due to μ = const. !" collimation: !" energy analysis: only electrons with E || > eU 0 (retarding potential) can pass analysing plane � high-pass filter with a sharp transmission function, no tails! !" energy resolution: ! ! E = E ∙ B min / B max = 0.93 eV 11 T. Thümmler - Status and commissioning of KATRIN

  12. The KATRIN Setup - Overview Tritium source Transport section Pre spectrometer Spectrometer Detector " E = 0.93 eV E > 18.3 keV e - 1 e - /s v e e - e - 3 H e - e - 10 3 e - /s e - " decay e - 0 11 s 10 11 e - /s / 1 3 He 3 H E = 18600 eV 3 He � 70 m ! 12 T. Thümmler - Status and commissioning of KATRIN

  13. magnetic field & electrostatic potential tritium source B max spectrometer 1 B-field [T] 10 -1 10 -2 B min potential [kV] -20 -10 0 -40 -30 -20 -10 0 +10 distance from analysing plane [m] 13 T. Thümmler - Status and commissioning of KATRIN

  14. The KATRIN Setup tritium-bearing components electrostatic spectrometers & detector 10 11 electrons/s tritium source <10 -2 cps total background " 10 -3 stability of tritium source column density " " d " retention factor for molecular tritium R = 10 14 " effective removal of ions " " fully adiabatic (meV scale) transport of electrons over > 50 m " " avoid particle storage in Penning-like traps " " avoid contermination by Rn in the volume 14 T. Thümmler - Status and commissioning of KATRIN

  15. Windowless Gaseous Tritium Source WGTS WGTS 16 m Design parameter luminosity ! 1.7 # 10 11 Bq ! Tritium Laboratory Karlsruhe ! - a unique research facility in Europe ! injection rate ! 5 # 10 19 T 2 /s � 40 g/day � 10 kg/y ! Tritium purity ! > 95% ! ±0.1 % ! temperature ! T = 27 K ± 30 mK ! ±0.1 % ! pressure ! p inj � 10 -3 mbar ! ±0.1 % ! magnetic guiding ! B = 3.6 T ! CAPER facility 15 T. Thümmler - Status and commissioning of KATRIN

  16. Windowless Gaseous Tritium Source WGTS ISS glove box KATRIN tritium loop system CMS-R DPS1-R WGTS DPS1-F DPS2-F 5% 95% 95% 5% batch inner loop mode, 60 days control system (<1 Ci) T 2 injection T 2 retention- 1% 1% system T 2 preparation isotope separation permeator Up and running extremely stable! ! designed for a stability at 10 -3 level ! achieved: 2 # 10 -4 over 4 months 16 T. Thümmler - Status and commissioning of KATRIN

  17. Windowless Gaseous Tritium Source WGTS S. Grohmann et al., Cryogenics, Volume 51, Issue 8, August 2011 WGTS Demonstrator: KATRIN requirement: ! on-site and cold tested T = 27 K with " T < 30 mK in 2010 ! " T max = ± 3 mK Cu Tritium Kr Temperature [K] ! beam tube conzept: 2-Phasen Neon (sied. Flüssigkeit) Helium 2 phase s.c heater vessel Neon . s 17 T. Thümmler - Status and commissioning of KATRIN

  18. Transport and Pumping Sections O. Kazachenko et al., NIM A 587 (2008) 136 F. Eichelhardt et al, Fusion Science and Technology 54 (2008) 615 DPS2-F CPS cryo-sorption T 2 stainless steel ß´s ß´s Argon Frost Pump T = 3 – 4.5 K ! active pumping, 4 TMPs !" Tritium retention 10 5 ! pumping by cryo-sorption ! magnetic field: 5.6 T !" Tritium retention >10 7 ! under construction, to be installed 2014 ! magnetic field: 5.6 T ! delivery Spring 2014 18 T. Thümmler - Status and commissioning of KATRIN

  19. Electrostatic Spectrometers pre-filter option precision filter - scanning fixed retarding potential variable retarding potential U 0 = - 18.3 kV U 0 = - 18.4 … -18.6 kV # E ~ 100 eV # # E ~ 0.93 eV (100% transmission) # no info - " filter out all ß-decay on m( ! ) electrons without m( ! ! )-info - reduce background from ionising collisions tandem design: pre-filter & energy analysis 10 11 electrons/s ! 10 -2 electrons/s 19 T. Thümmler - Status and commissioning of KATRIN

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend